首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   21篇
  国内免费   1篇
  2021年   4篇
  2020年   2篇
  2018年   3篇
  2017年   6篇
  2016年   8篇
  2015年   5篇
  2014年   4篇
  2013年   8篇
  2012年   11篇
  2011年   9篇
  2010年   13篇
  2009年   10篇
  2008年   13篇
  2007年   13篇
  2006年   8篇
  2005年   6篇
  2004年   11篇
  2003年   7篇
  2002年   7篇
  2001年   11篇
  2000年   6篇
  1999年   4篇
  1998年   11篇
  1997年   6篇
  1996年   5篇
  1994年   3篇
  1993年   7篇
  1990年   3篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1970年   2篇
  1969年   1篇
  1966年   1篇
  1948年   1篇
  1942年   1篇
  1935年   1篇
  1932年   1篇
  1922年   1篇
排序方式: 共有234条查询结果,搜索用时 15 毫秒
1.
Several antifungal agents, at concentrations of 10 micrograms/ml, were shown to suppress ATP concentrations very rapidly in intact cells and spheroplasts of Candida albicans. The highest ATP-suppressing activity was shown by the highly lipophilic imidazole derivatives difonazole, clotrimazole, econazole, isoconazole, miconazole, oxiconazole and tioconazole, which all caused a reduction of cellular ATP content of more than 50% in 10 min. Relatively hydrophilic imidazole derivatives such as ketoconazole were essentially inactive in the test, as were the triazole derivatives fluconazole, ICI 153066, itraconazole and terconazole, and 5-fluorocytosine. Amphotericin B and terbinafine possessed intermediate ATP-suppressing activity, and the dose-response and pH-response curves for these compounds suggested their mechanism of ATP suppression differed from that of the active imidazole derivatives. ATP suppression by azole antifungals did not involve leakage of ATP from the cells and the effect was entirely abrogated by the presence of serum. Intact cells and spheroplasts of yeast-form and hyphal-form C. albicans were generally equally sensitive to ATP suppression, but stationary-phase cells of both morphological forms were less sensitive than exponential-phase cells. The extent of ATP suppression was significantly reduced in stationary-phase yeast cells of a C. albicans strain with known resistance to azole antifungals, but exponential-phase cells of resistant and susceptible strains were equally sensitive. The effect is tentatively ascribed to membrane damage caused directly by the antifungals.  相似文献   
2.
3.
We have broadly defined the DNA regions regulating esterase6 activity in several life stages and tissue types of D. melanogaster using P- element-mediated transformation of constructs that contain the esterase6 coding region and deletions or substitutions in 5' or 3' flanking DNA. Hemolymph is a conserved ancestral site of EST6 activity in Drosophila and the primary sequences regulating its activity lie between -171 and -25 bp relative to the translation initiation site: deletion of these sequences decrease activity approximately 20-fold. Hemolymph activity is also modulated by four other DNA regions, three of which lie 5' and one of which lies 3' of the coding region. Of these, two have positive and two have negative effects, each of approximately twofold. Esterase6 activity is present also in two male reproductive tract tissues; the ejaculatory bulb, which is another ancestral activity site, and the ejaculatory duct, which is a recently acquired site within the melanogaster species subgroup. Activities in these tissues are at least in part independently regulated: activity in the ejaculatory bulb is conferred by sequences between -273 and -172 bp (threefold decrease when deleted), while activity in the ejaculatory duct is conferred by more distal sequences between -844 and -614 bp (fourfold decrease when deleted). The reproductive tract activity is further modulated by two additional DNA regions, one in 5' DNA (-613 to -284 bp; threefold decrease when deleted) and the other in 3' DNA (+1860 to +2731 bp; threefold decrease when deleted) that probably overlaps the adjacent esteraseP gene. Collating these data with previous studies suggests that expression of EST6 in the ancestral sites is mainly regulated by conserved proximal sequences while more variable distal sequences regulate expression in the acquired ejaculatory duct site.   相似文献   
4.
Immunoglobulins are encoded by a large multigene system that undergoes somatic rearrangement and additional genetic change during the development of immunoglobulin-producing cells. Inducible antibody and antibody-like responses are found in all vertebrates. However, immunoglobulin possessing disulfide-bonded heavy and light chains and domain-type organization has been described only in representatives of the jawed vertebrates. High degrees of nucleotide and predicted amino acid sequence identity are evident when the segmental elements that constitute the immunoglobulin gene loci in phylogenetically divergent vertebrates are compared. However, the organization of gene loci and the manner in which the independent elements recombine (and diversify) vary markedly among different taxa. One striking pattern of gene organization is the "cluster type" that appears to be restricted to the chondrichthyes (cartilaginous fishes) and limits segmental rearrangement to closely linked elements. This type of gene organization is associated with both heavy- and light-chain gene loci. In some cases, the clusters are "joined" or "partially joined" in the germ line, in effect predetermining or partially predetermining, respectively, the encoded specificities (the assumption being that these are expressed) of the individual loci. By relating the sequences of transcribed gene products to their respective germ-line genes, it is evident that, in some cases, joined-type genes are expressed. This raises a question about the existence and/or nature of allelic exclusion in these species. The extensive variation in gene organization found throughout the vertebrate species may relate directly to the role of intersegmental (V<==>D<==>J) distances in the commitment of the individual antibody-producing cell to a particular genetic specificity. Thus, the evolution of this locus, perhaps more so than that of others, may reflect the interrelationships between genetic organization and function.   相似文献   
5.
Schistosomiasis vector snails are subjected to extreme seasonal changes, particularly in ephemeral rivers and lentic waterbodies. In the tropics, aestivation is one of the adaptive strategies for survival and is used by snails in times of extremely high temperatures and desiccation. Aestivation therefore plays an important role in maintaining the transmission of schistosomiasis. This review assesses the possible impacts of climate change on the temporal and spatial distribution of schistosomiasis-transmitting snails with special emphasis on aestivation, and discusses the effect of schistosome infection on aestivation ability. The impacts of parasite development on snails, as well as physiological changes, are discussed with reference to schistosomiasis transmission. This review shows that schistosome-infected snails have lower survival rates during aestivation, and that those that survive manage to get rid of the infection. In general, snail aestivation ability is poor and survival chances diminish with time. Longer dry periods result in fewer, as well as uninfected, snails. However, the ability of the surviving snails to repopulate the habitats is high.  相似文献   
6.
The process of evaporation results in the fractionation of water isotopes such that the lighter 16O isotope preferentially escapes the gas phase leaving the heavier 18O isotope to accumulate at the sites of evaporation. This applies to transpiration from a leaf with the degree of fractionation dependent on a number of environmental and physiological factors that are well understood. Nevertheless, the 18O enrichment of bulk leaf water is often less than that predicted for the sites of evaporation. The advection of less enriched water in the transpiration stream has been suggested to limit the back diffusion of enriched evaporative site water (Péclet effect); however, evidence for this effect has been varied. In sampling across a range of species with different vein densities and saturated water contents, we demonstrate the importance of accounting for the relative ‘pool’ sizes of the vascular and mesophyll water for the interpretation of a Péclet effect. Further, we provide strong evidence for a Péclet signal within the xylem that if unaccounted for can lead to confounding of the estimated enrichment within the mesophyll water. This has important implications for understanding variation in the effective path length of the mesophyll and hence potentially the δ18O of organic matter.  相似文献   
7.
Pattern recognition receptors (PRRs) play a key role in plant and animal innate immunity. PRR binding of their cognate ligand triggers a signaling network and activates an immune response. Activation of PRR signaling must be controlled prior to ligand binding to prevent spurious signaling and immune activation. Flagellin perception in Arabidopsis through FLAGELLIN‐SENSITIVE 2 (FLS2) induces the activation of mitogen‐activated protein kinases (MAPKs) and immunity. However, the precise molecular mechanism that connects activated FLS2 to downstream MAPK cascades remains unknown. Here, we report the identification of a differentially phosphorylated MAP kinase kinase kinase that also interacts with FLS2. Using targeted proteomics and functional analysis, we show that MKKK7 negatively regulates flagellin‐triggered signaling and basal immunity and this requires phosphorylation of MKKK7 on specific serine residues. MKKK7 attenuates MPK6 activity and defense gene expression. Moreover, MKKK7 suppresses the reactive oxygen species burst downstream of FLS2, suggesting that MKKK7‐mediated attenuation of FLS2 signaling occurs through direct modulation of the FLS2 complex.  相似文献   
8.
Two novel P450 heme iron ligand sets were generated by directed mutagenesis of the flavocytochrome P450 BM3 heme domain. The A264H and A264K variants produce Cys-Fe-His and Cys-Fe-Lys axial ligand sets, which were validated structurally and characterized by spectroscopic analysis. EPR and magnetic circular dichroism (MCD) provided fingerprints defining these P450 ligand sets. Near IR MCD spectra identified ferric low spin charge-transfer bands diagnostic of the novel ligands. For the A264K mutant, this is the first report of a Cys-Fe-Lys near-IR MCD band. Crystal structure determination showed that substrate-free A264H and A264K proteins crystallize in distinct conformations, as observed previously in substrate-free and fatty acid-bound wild-type P450 forms, respectively. This, in turn, likely reflects the positioning of the I alpha helix section of the protein that is required for optimal configuration of the ligands to the heme iron. One of the monomers in the asymmetric unit of the A264H crystals was in a novel conformation with a more open substrate access route to the active site. The same species was isolated for the wildtype heme domain and represents a novel conformational state of BM3 (termed SF2). The "locking" of these distinct conformations is evident from the fact that the endogenous ligands cannot be displaced by substrate or exogenous ligands. The consequent reduction of heme domain conformational heterogeneity will be important in attempts to determine atomic structure of the full-length, multidomain flavocytochrome, and thus to understand in atomic detail interactions between its heme and reductase domains.  相似文献   
9.
Cyclohexanone monooxygenase (CMO) is a soluble flavoenzyme originally isolated from Acinetobacter spp. which carries out Baeyer-Villiger reactions with cyclic ketone substrates. In the present study we cloned the Acinetobacter CMO gene and modified it for facile purification from heterologous expression systems by incorporation of a His(6)-tag at its C-terminus. A single purification step employing metal (Ni(2+))-affinity column chromatography provided essentially homogeneous enzyme in yields of 69-72%. The properties of the purified, recombinant enzymes (rCMO) were compared with that of native CMO (nCMO) isolated from Acinetobacter cultures grown in the presence of cyclohexanone. The specific activities of His(6)-tagged rCMO and nCMO toward their index substrate, cyclohexanone, were similar and ranged from 14 to 20 micromol/min/mg. nCMO and rCMO from the Escherichia coli expression system exhibited molecular masses, determined by electrospray mass spectrometry, of 60,800 and 61,615 Da, respectively, an increase for the recombinant enzyme equivalent to the mass of the His(6)-tag. However, rCMO expressed in Saccharomyces cerevisiae consistently exhibited a mass some 50 Da larger than rCMO expressed in bacteria. Edman degradation confirmed that rCMO purified from the E. coli system and nCMO shared the same N-terminal sequence, whereas no sequence information could be obtained for rCMO expressed in yeast. Therefore, the yeast-expressed enzyme possesses an additional posttranslational modification(s), possibly acylation, at the N-terminus. Expression in E. coli is the preferred system for future site-directed mutagenesis studies and crystallization efforts.  相似文献   
10.
Bacterial nitric-oxide reductase catalyzes the two electron reduction of nitric oxide to nitrous oxide. In the oxidized form the active site non-heme Fe(B) and high spin heme b(3) are mu-oxo bridged. The heme b(3) has a ligand-to-metal charge transfer band centered at 595 nm, which is insensitive to pH over the range of 6.0-8.5. Partial reduction of nitric-oxide reductase yields a three electron-reduced state where only the heme b(3) remains oxidized. This results in a shift of the heme b(3) charge transfer band lambda(max) to longer wavelengths. At pH 6.0 the charge transfer band lambda(max) is 605 nm, whereas at pH 8.5 it is 635 nm. At pH 6.5 and 7.5 the nitric-oxide reductase ferric heme b(3) population is a mixture of both 605- and 635-nm forms. Magnetic circular dichroism spectroscopy suggests that at all pH values examined the proximal ligand to the ferric heme b(3) in the three electron-reduced form is histidine. At pH 8.5 the distal ligand is hydroxide, whereas at pH 6.0, when the enzyme is most active, it is water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号