首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   3篇
  2020年   2篇
  2019年   4篇
  2018年   3篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  1996年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
1.
Understanding the mechanisms that enforce, maintain or reverse the process of speciation is an important challenge in evolutionary biology. This study investigates the patterns of divergence and discusses the processes that form and maintain divergent lineages of the tsetse fly Glossina fuscipes fuscipes in Uganda. We sampled 251 flies from 18 sites spanning known genetic lineages and the four admixture zones between them. We apply population genomics, hybrid zone and approximate Bayesian computation to the analysis of three types of genetic markers: 55,267 double‐digest restriction site‐associated DNA (ddRAD) SNPs to assess genome‐wide admixture, 16 microsatellites to provide continuity with published data and accurate biogeographic modelling, and a 491‐bp fragment of mitochondrial cytochrome oxidase I and II to infer maternal inheritance patterns. Admixture zones correspond with regions impacted by the reorganization of Uganda's river networks that occurred during the formation of the West African Rift system over the last several hundred thousand years. Because tsetse fly population distributions are defined by rivers, admixture zones likely represent both old and new regions of secondary contact. Our results indicate that older hybrid zones contain mostly parental types, while younger zones contain variable hybrid types resulting from multiple generations of interbreeding. These findings suggest that reproductive barriers are nearly complete in the older admixture zones, while nearly absent in the younger admixture zones. Findings are consistent with predictions of hybrid zone theory: Populations in zones of secondary contact transition rapidly from early to late stages of speciation or collapse all together.  相似文献   
2.
This article documents the addition of 238 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Alytes dickhilleni, Arapaima gigas, Austropotamobius italicus, Blumeria graminis f. sp. tritici, Cobitis lutheri, Dendroctonus ponderosae, Glossina morsitans morsitans, Haplophilus subterraneus, Kirengeshoma palmata, Lysimachia japonica, Macrolophus pygmaeus, Microtus cabrerae, Mytilus galloprovincialis, Pallisentis (Neosentis) celatus, Pulmonaria officinalis, Salminus franciscanus, Thais chocolata and Zootoca vivipara. These loci were cross-tested on the following species: Acanthina monodon, Alytes cisternasii, Alytes maurus, Alytes muletensis, Alytes obstetricans almogavarii, Alytes obstetricans boscai, Alytes obstetricans obstetricans, Alytes obstetricans pertinax, Cambarellus montezumae, Cambarellus zempoalensis, Chorus giganteus, Cobitis tetralineata, Glossina fuscipes fuscipes, Glossina pallidipes, Lysimachia japonica var. japonica, Lysimachia japonica var. minutissima, Orconectes virilis, Pacifastacus leniusculus, Procambarus clarkii, Salminus brasiliensis and Salminus hilarii.  相似文献   
3.
Secondary contact between long isolated populations has several possible outcomes. These include the strengthening of preexisting reproductive isolating mechanisms via reinforcement, the emergence of a hybrid lineage that is distinct from its extant parental lineages and which occupies a spatially restricted zone between them, or complete merging of two populations such that parental lineages are no longer extant (“lineage fusion” herein). The latter scenario has rarely been explicitly considered in single‐species and comparative phylogeographic studies, yet it has the potential to impact inferences about population history and levels of congruence. In this paper, we explore the idea that insights into past lineage fusion may now be possible, owing to the advent of next‐generation sequencing. Using simulated DNA sequence haplotype datasets (i.e., loci with alleles comprised of a set of linked nucleotide polymorphisms), we examined basic requirements (number of loci and individuals sampled) for identifying cases when a present‐day panmictic population is the product of lineage fusion, using an exemplar statistical framework—approximate Bayesian computation. We found that with approximately 100 phased haplotype loci (each 400 bp long) and modest sample sizes of individuals (10 per population), lineage fusion can be detected under rather challenging scenarios. This included some scenarios where reticulation was fully contained within a Last Glacial Maximum timeframe, provided that mixing was symmetrical, ancestral gene pools were moderately to deeply diverged, and the lag time between the fusion event and gene pool sampling was relatively short. However, the more realistic case of asymmetrical mixing is not prohibitive if additional genetic data (e.g., 400 loci) are available. Notwithstanding some simplifying assumptions of our simulations and the knowledge gaps that remain about the circumstances under which lineage fusion is potentially detectable, we suggest that the recent release from data limitation allows phylogeographers to expand the scope of inferences about long‐term population history.  相似文献   
4.
5.
Galápagos tortoises represent the only surviving lineage of giant tortoises that exhibit two different types of shell morphology. The taxonomy of Galápagos tortoises was initially based mainly on diagnostic morphological characters of the shell, but has been clarified by molecular studies indicating that most islands harbor monophyletic lineages, with the exception of Isabela and Santa Cruz. On Santa Cruz there is strong genetic differentiation between the two tortoise populations (Cerro Fatal and La Reserva) exhibiting domed shell morphology. Here we integrate nuclear microsatellite and mitochondrial data with statistical analyses of shell shape morphology to evaluate whether the genetic distinction and variability of the two domed tortoise populations is paralleled by differences in shell shape. Based on our results, morphometric analyses support the genetic distinction of the two populations and also reveal that the level of genetic variation is associated with morphological shell shape variation in both populations. The Cerro Fatal population possesses lower levels of morphological and genetic variation compared to the La Reserva population. Because the turtle shell is a complex heritable trait, our results suggest that, for the Cerro Fatal population, non-neutral loci have probably experienced a parallel decrease in variability as that observed for the genetic data.  相似文献   
6.
Tsetse flies (genus Glossina) are the only vector for the parasitic trypanosomes responsible for sleeping sickness and nagana across sub‐Saharan Africa. In Uganda, the tsetse fly Glossina fuscipes fuscipes is responsible for transmission of the parasite in 90% of sleeping sickness cases, and co‐occurrence of both forms of human‐infective trypanosomes makes vector control a priority. We use population genetic data from 38 samples from northern Uganda in a novel methodological pipeline that integrates genetic data, remotely sensed environmental data, and hundreds of field‐survey observations. This methodological pipeline identifies isolated habitat by first identifying environmental parameters correlated with genetic differentiation, second, predicting spatial connectivity using field‐survey observations and the most predictive environmental parameter(s), and third, overlaying the connectivity surface onto a habitat suitability map. Results from this pipeline indicated that net photosynthesis was the strongest predictor of genetic differentiation in G. f. fuscipes in northern Uganda. The resulting connectivity surface identified a large area of well‐connected habitat in northwestern Uganda, and twenty‐four isolated patches on the northeastern margin of the G. f. fuscipes distribution. We tested this novel methodological pipeline by completing an ad hoc sample and genetic screen of G. f. fuscipes samples from a model‐predicted isolated patch, and evaluated whether the ad hoc sample was in fact as genetically isolated as predicted. Results indicated that genetic isolation of the ad hoc sample was as genetically isolated as predicted, with differentiation well above estimates made in samples from within well‐connected habitat separated by similar geographic distances. This work has important practical implications for the control of tsetse and other disease vectors, because it provides a way to identify isolated populations where it will be safer and easier to implement vector control and that should be prioritized as study sites during the development and improvement of vector control methods.  相似文献   
7.
Laboratory scale to industrial scale purification of biomolecules from cell culture supernatants and lysed cell solutions can be accomplished using affinity chromatography. While affinity chromatography using porous protein A agarose beads packed in columns is arguably the most common method of laboratory scale isolation of antibodies and recombinant proteins expressing Fc fragments of IgG, it can be a time consuming and expensive process. Time and financial constraints are especially daunting in small basic science labs that must recover hundreds of micrograms to milligram quantities of protein from dilute solutions, yet lack access to high pressure liquid delivery systems and/or personnel with expertise in bioseparations. Moreover, product quantification and characterization may also excessively lengthen processing time over several workdays and inflate expenses (consumables, wages, etc.). Therefore, a fast, inexpensive, yet effective protocol is needed for laboratory scale isolation and characterization of antibodies and other proteins possessing an Fc fragment. To this end, we have devised a protocol that can be completed by limited-experience technical staff in less than 9 hr (roughly one workday) and as quickly as 4 hr, as opposed to traditional methods that demand 20+ work hours. Most required equipment is readily available in standard biomedical science, biochemistry, and (bio)chemical engineering labs, and all reagents are commercially available. To demonstrate this protocol, representative results are presented in which chimeric murine galectin-1 fused to human Fc (Gal-1hFc) from cell culture supernatant was isolated using a protein A membrane adsorber. Purified Gal-1hFc was quantified using an expedited Western blotting analysis procedure and characterized using flow cytometry. The streamlined workflow can be modified for other Fc-expressing proteins, such as antibodies, and/or altered to incorporate alternative quantification and characterization methods.  相似文献   
8.
Currently 70% of the population in Cameroon are reliant on solid fuel for cooking (90% in rural communities) and the associated household air pollution contributes to significant mortality and morbidity in the country. To address the problems of energy security, deforestation and pollution the government has developed a strategy (Masterplan) to increase use of liquified petroleum gas (LPG) as a cooking fuel from 12% to 58% by 2030. As a clean fuel scaled adoption of LPG has the potential to make significant positive impacts on population health. The LPG Adoption in Cameroon Evaluation (LACE) studies are assessing in the community (i) barriers and enablers for and (ii) local interventions to support, adoption and sustained use of LPG. A census survey conducted for LACE in rural and peri-urban regions of SW Cameroon provided an opportunity to investigate current fuel use patterns and factors associated with primary and exclusive use of LPG. A cross-sectional survey of 1577 households (1334 peri-urban and 243 rural) was conducted in March 2016 using standardised fuel use and household socio-demographic questions, administered by trained fieldworkers. Wood (40.7%) and LPG (51.1%) were the most frequently reported fuels, although the dominant fuels in rural and peri-urban communities were wood (81%) and LPG (58%) respectively. Fuel stacking was observed for the majority of LPG using households (91% of peri-urban and 99% of rural households). In rural homes, a higher level of education, access to sanitation and piped water and household wealth (income and asset ownership) were all significantly associated with LPG use (p < 0.05). In peri-urban homes, younger age, access to sanitation and piped water and increasing education were significantly associated with both any and exclusive use of LPG (p < 0.05). However, whilst household wealth was related to any LPG use, there was no relationship with exclusive use. Results from this census survey of a relatively well-established LPG market with lower levels of poverty and high levels of education than Cameroon as a whole, find LPG usage well below target levels set by the Cameroon government (58% by 2030). Fuel stacking is an issue for the majority of LPG using households. Whilst, as observed here, education, household wealth and socio-economic status are well recognised predictors of adoption and sustained use of clean modern fuels, it is important to consider factors across the whole LPG eco-system when developing policies to support their scaled expansion. A comprehensive approach is therefore required to ensure implementation of the Cameroon LPG Masterplan achieves its aspirational adoption target within its stated timeframe.  相似文献   
9.
Although many classic radiations on islands are thought to be the result of repeated lineage splitting, the role of past fusion is rarely known because during these events, purebreds are rapidly replaced by a swarm of admixed individuals. Here, we capture lineage fusion in action in a Galápagos giant tortoise species, Chelonoidis becki, from Wolf Volcano (Isabela Island). The long generation time of Galápagos tortoises and dense sampling (841 individuals) of genetic and demographic data were integral in detecting and characterizing this phenomenon. In C. becki, we identified two genetically distinct, morphologically cryptic lineages. Historical reconstructions show that they colonized Wolf Volcano from Santiago Island in two temporally separated events, the first estimated to have occurred ~199 000 years ago. Following arrival of the second wave of colonists, both lineages coexisted for approximately ~53 000 years. Within that time, they began fusing back together, as microsatellite data reveal widespread introgressive hybridization. Interestingly, greater mate selectivity seems to be exhibited by purebred females of one of the lineages. Forward‐in‐time simulations predict rapid extinction of the early arriving lineage. This study provides a rare example of reticulate evolution in action and underscores the power of population genetics for understanding the past, present and future consequences of evolutionary phenomena associated with lineage fusion.  相似文献   
10.
Throughout the developing world, urban centres with sprawling slum settlements are rapidly expanding and invading previously forested ecosystems. Slum communities are characterized by untended refuse, open sewers and overgrown vegetation, which promote rodent infestation. Norway rats (Rattus norvegicus) are reservoirs for epidemic transmission of many zoonotic pathogens of public health importance. Understanding the population ecology of R. norvegicus is essential to formulate effective rodent control strategies, as this knowledge aids estimation of the temporal stability and spatial connectivity of populations. We screened for genetic variation, characterized the population genetic structure and evaluated the extent and patterns of gene flow in the urban landscape using 17 microsatellite loci in 146 rats from nine sites in the city of Salvador, Brazil. These sites were divided between three neighbourhoods within the city spaced an average of 2.7 km apart. Surprisingly, we detected very little relatedness among animals trapped at the same site and found high levels of genetic diversity, as well as structuring across small geographical distances. Most FST comparisons among sites were statistically significant, including sites <400 m apart. Bayesian analyses grouped the samples in three genetic clusters, each associated with distinct sampling sites from different neighbourhoods or valleys within neighbourhoods. These data indicate the existence of complex genetic structure in R. norvegicus in Salvador, linked to the heterogeneous urban landscape. Future rodent control measures need to take into account the spatial and temporal linkage of rat populations in Salvador, as revealed by genetic data, to develop informed eradication strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号