首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
  2017年   2篇
  2011年   1篇
  2010年   2篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2001年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
We investigated the influence of the composition of the fibrolytic microbial community on the development and activities of hydrogen-utilizing microorganisms in the rumens of gnotobiotically reared lambs. Two groups of lambs were reared. The first group was inoculated with Fibrobacter succinogenes, a non-H(2)-producing species, as the main cellulolytic organism, and the second group was inoculated with Ruminococcus albus, Ruminococcus flavefaciens, and anaerobic fungi that produce hydrogen. The development of hydrogenotrophic bacterial communities, i.e., acetogens, fumarate and sulfate reducers, was monitored in the absence of methanogens and after inoculation of methanogens. Hydrogen production and utilization and methane production were measured in rumen content samples incubated in vitro in the presence of exogenous hydrogen (supplemented with fumarate or not supplemented with fumarate) or in the presence of ground alfalfa hay as a degradable substrate. Our results show that methane production was clearly reduced when the dominant fibrolytic species was a non-H(2)-producing species, such as Fibrobacter succinogenes, without significantly impairing fiber degradation and fermentations in the rumen. The addition of fumarate to the rumen contents stimulated H(2) utilization only by the ruminal microbiota inoculated with F. succinogenes, suggesting that these communities could play an important role in fumarate reduction in vivo.  相似文献   
2.
AIM: To examine the effect of concentrate and yeast additive on the number of cellulolytic bacteria in the rumen of sheep. METHODS AND RESULTS: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens were quantified using real-time PCR (targeting 16S rDNA) in parallel to cellulolytic flora enumeration with cultural techniques. Whatever the conditions tested, R. flavefaciens was slightly more abundant than F. succinogenes, with both species outnumbering R. albus. Before feeding, the shift from hay to hay plus concentrate diet had no effect on rumen pH and on the number of the three specie; while after feeding, the concentrate-supplemented diet induced a decrease (-1 log) of the number of the three species concomitant with the rumen acidification. Overall, the presence of the live yeast resulted in a significant increase (two- to fourfold) of the Ruminococci. CONCLUSION: The use of real-time PCR allowed us to show changes in the number of cellulolytic bacterial species in vivo in response to diet shift and additives that could not be as easily evidenced by classical microbial methods. SIGNIFICANCE AND IMPACT OF THE STUDY: This study contributes to the understanding of the negative impact of readily fermentable carbohydrates on rumen cellulolysis and the beneficial effect of yeast on rumen fermentation.  相似文献   
3.
We investigated the potential of the ruminant feed additive Saccharomyces cerevisiae CNCM I-1077 on protein and peptide degrading activities of the rumen bacterial species Prevotella albensis M384, Streptococcus bovis 20480, and Butyrivibrio fibrisolvens 3071 grown in vitro. Alive or heat-killed yeast cells were added to bacterial cultures in a complex casein–glucose medium. After incubation of the cultures at 39°C under O2-free CO2, peptidase activities were determined in the absence or in the presence of yeasts. Protease activities were detected after PAGE in gelatin-copolymerized gels. In co-incubations of bacteria and live S. cerevisiae I-1077, proteinase activities were reduced compared to the activities in the bacterial monocultures. Measurement of peptidase activities and microbial enumerations in the co-incubations suggested that live yeasts and bacteria interacted in a competitive way, leading to a decrease in peptidase activities. The mechanism responsible for such an effect could be mainly a competition for substrate utilization, but the release of small competitive peptides by the yeast cells is also likely to be implicated.  相似文献   
4.
We studied the effects of a yeast additive used in ruminant nutrition on the establishment of cellulolytic bacteria, on plant cell wall degradation and on digestive functions in the rumen of gnotobiotically-reared lambs. Cellulolytic bacteria inoculated to the lambs tended to become established earlier in the presence of Saccharomyces cerevisiae CNCM I-1077 (SC). In addition, their population was maintained at a higher level, when the physico-chemical conditions of the biotope were altered. In these lambs, specific activities of fibrolytic enzymes were greater, and in sacco degradation of wheat straw tended to increase. In the presence of SC there was a decrease in ruminal ammonia concentration and a higher volatile fatty acid (VFA) concentration when lambs were 20 to 50 days old. These data suggest that this yeast strain may stimulate the development of cellulolytic microflora and enhance microbial activity in the rumen of young ruminants. Such activity could be beneficial in preventing microbial imbalance and a reduction of rumen function efficiency in the case of nutritional transitions. Further studies with conventional animals will soon be performed in order to verify these dings.  相似文献   
5.
Healthy ruminants are the main reservoir of Shiga toxin-producing Escherichia coli (STEC). During their transit through the ruminant gastrointestinal tract, STEC encounters a number of acidic environments. As all STEC strains are not equally resistant to acidic conditions, the purpose of this study was to investigate whether acid resistance confers an ecological advantage to STEC strains in ruminant digestive contents and whether acid resistance mechanisms are induced in the rumen compartment. We found that acid-resistant STEC survived at higher rates during prolonged incubation in rumen fluid than acid-sensitive STEC and that they resisted the highly acidic conditions of the abomasum fluid, whereas acid-sensitive strains were killed. However, transit through the rumen contents allowed acid-sensitive strains to survive in the abomasum fluid at levels similar to those of acid-resistant STEC. The acid resistance status of the strains had little influence on STEC growth in jejunal and cecal contents. Supplementation with the probiotic Saccharomyces cerevisiae CNCM I-1077 or Lactobacillus acidophilus BT-1386 led to killing of all of the strains tested during prolonged incubation in the rumen contents, but it did not have any influence in the other digestive compartments. In addition, S. cerevisiae did not limit the induction of acid resistance in the rumen fluid. Our results indicate that the rumen compartment could be a relevant target for intervention strategies that could both limit STEC survival and eliminate induction of acid resistance mechanisms in order to decrease the number of viable STEC cells reaching the hindgut and thus STEC shedding and food contamination.Shiga toxin-producing Escherichia coli (STEC) strains are food-borne pathogens that cause human diseases ranging from uncomplicated diarrhea to hemorrhagic colitis (HC), as well as life-threatening complications, such as hemolytic-uremic syndrome (HUS). Most outbreaks and sporadic cases of HC and HUS have been attributed to O157:H7 STEC (http://www.cdc.gov/ecoli/outbreaks.html; http://www.euro.who.int). However, in some geographic areas, non-O157:H7 STEC infections are considered to be at least as important as E. coli O157:H7 infections, but they are often underdiagnosed (21, 46). In spite of diverse virulence characteristics, one common trait of pathogenic STEC strains could be resistance to the gastric acidity in humans. Indeed, it has been suggested that acid resistance of E. coli O157:H7 is negatively correlated with the infectious dose required for this organism to cause disease in humans (17).Healthy cattle and other ruminants appear to be the main reservoir of STEC strains. However, colonization of the cattle gastrointestinal tract (GIT) by STEC seems to be a transient event, with a mean duration of 14 days to 1 month (4, 8, 38). The site of STEC persistence and proliferation in the GIT depends on the STEC strain and seems to vary from one individual to another. Some previous studies identified the rumen as the primary site of colonization (8), whereas other studies referred to the cecum, the colon, or the rectum (10, 18, 23, 32, 42). Although STEC strains adhere in vitro to bovine colonic mucosa, forming the characteristic attaching and effacing lesions (35), they are very rarely associated with tissues in animal carriers and are generally isolated from the digesta (8). STEC does not, therefore, seem to colonize the gut mucosa, except for the anorectal mucosa, which has been described as the preferred colonization site for O157:H7 strains but not for non-O157:H7 strains (24, 32). During their transit through the ruminant GIT, STEC strains encounter various acidic conditions. Volatile fatty acid (VFA) concentrations are high in the rumen of grain-fed animals, and the pH may vary from 5.0 to 6.5. In these conditions, VFAs are in the undissociated form and can freely enter the bacterial cells, dissociate, and acidify the cytosol. In hay-fed animals, less fermentation occurs in the rumen, and the pH remains between 6.5 and 7. In the abomasum, STEC encounters strongly acidic conditions, regardless of the diet, due to the presence of mineral acids, resulting in a pH below 3. Then the pH increases from the proximal part to the distal part of the small intestine, and in the cecum and the colon STEC encounters more neutral pH conditions.All STEC strains are not equally resistant to acidic conditions (2, 9, 30, 45). Therefore, it could be hypothesized that acid-resistant (AR) STEC survives and persists better in the GIT of ruminants than acid-sensitive (AS) STEC. Acid resistance mechanisms can be induced during exposure to a moderately acidic environment (12, 26, 41). The rumen contents of a grain-fed animal could be such an environment favorable for the induction of acid resistance in STEC. While the diet does not seem to affect the acid resistance of an E. coli O157:H7 strain (19), grain feeding increases the number of acid-resistant generic coliforms (15, 19), either by inducing acid resistance mechanisms in the rumen or by selecting acid-resistant E. coli strains during passage through the abomasum. Hence, generic coliforms behave differently than E. coli O157:H7 in ruminants (19), and the potential ecological advantage conferred by acid resistance to non-O157:H7 STEC strains for persistence in the ruminant GIT has never been investigated.Inhibition of STEC proliferation in the ruminant gut may be mediated through probiotic supplementation. Several studies have demonstrated the capacity of certain lactic acid bacteria or yeast to reduce E. coli O157:H7 counts in vitro (1, 34) or in vivo (5, 40). The mechanisms of action of probiotics are not well characterized but could involve competition for nutrients and adhesion sites in the GIT, an increase in the VFA concentration and a decrease in the pH, production of antimicrobial molecules, or interference with quorum-sensing signaling (27-29). However, the impact of probiotics on non-O157:H7 STEC has been poorly investigated (36). Although not all non-O157:H7 STEC strains are pathogenic, limiting their carriage by ruminants should decrease the risk of food-borne illness. The impact of probiotics and of the physicochemical conditions of the rumen digesta on the survival of non-O157:H7 STEC strains or on induction of acid resistance mechanisms could have significant implications for farm management practices and food safety.The purpose of this work was to investigate whether the level of acid resistance, determined using an in vitro assay, confers an ecological advantage to STEC strains in ruminant digestive contents and whether acid resistance mechanisms are induced in the rumen compartment. Moreover, we evaluated the potential of probiotics to limit STEC survival and induction of acid resistance in the ruminant GIT.  相似文献   
6.
Live yeasts (Saccharomyces cerevisiae) are more and more widely used as feed additives for ruminants. They are considered as allochtonous microorganisms in the rumen environment, however, distributed daily to dairy cows or beef cattle they can survive in the digestive tract and interact with autochtonous microbial populations. The positive effects of yeast cells have been mainly demonstrated on growth and activity of fibre-degrading bacteria and fungi, on stabilisation of rumen pH and prevention of lactate accumulation, on ruminal microbial colonization and on the set up of fermentative processes during the pre-weaning period. Modes of action of yeast probiotics depend on their viability and stability in the rumen ecosystem. Up to now, the main modes of action identified are the supply of growth factors to rumen microorganisms, oxygen scavenging inducing more favourable conditions for the anaerobic communities, and nutritional competition with autochtonous ruminal species. Presented at the Second Probiotic Conference, Košice, 15–19 September 2004, Slovakia.  相似文献   
7.
The gastrointestinal tract (GIT) of ruminants is the main reservoir of enterohemorrhagic Escherichia coli, which is responsible for food-borne infections in humans that can lead to severe kidney disease. Characterization of biotic and abiotic factors that influence the carriage of these pathogens by the ruminant would help in the development of ecological strategies to reduce their survival in the GIT and to decrease the risk of contamination of animal products. We found that growth of E. coli O157:H7 in rumen fluid was inhibited by the autochthonous microflora. Growth was also reduced when rumen fluid came from sheep fed a mixed diet composed of 50% wheat and 50% hay, as opposed to a 100% hay diet. In fecal suspensions, E. coli O157:H7 growth was not suppressed by the autochthonous flora. However, a probiotic strain of Lactobacillus acidophilus inhibited E. coli O157:H7 growth in fecal suspensions. The inhibitory effect was dose dependent. These lactic acid bacteria could be a relevant tool for controlling O157:H7 development in the terminal part of the ruminant GIT, which has been shown to be the main site of colonization by these pathogenic bacteria.  相似文献   
8.

For ethical, technical, regulatory, and cost reasons, in vitro methods are increasingly used as an alternative to in vivo experimentations. The aim of the present study was to validate, according to in vivo data in living animals, a new in vitro model of the piglet colon, the PigutIVM, under both control conditions and antibiotic disturbance by the widely used colistin. The PigutIVM reproduces the main biotic and abiotic parameters of the piglet colon: temperature, pH, retention time, supply of ileal effluents, complex, and metabolically active microbiota and self-maintained anaerobiosis. Under both control and antibiotic-treated conditions, qPCR analyses showed that the main bacterial populations of piglet gut microbiota were similar in vitro and in vivo, with Pearson correlation coefficient higher than 0.9. During colistin administration, both in piglets and in the in vitro model, a significant decrease in Escherichia coli populations was observed together with changes in microbial composition of subdominant populations. SCFA concentrations were similar in vitro and in vivo and were not modified by colistin. Interestingly, the administration of the probiotic Saccharomyces cerevisiae var. boulardii CNCM I-1079 led in vitro to a decrease in E. coli levels, as previously observed when the antibiotic treatment was applied. This new in vitro model of the piglet colon provides a flexible, reproducible, and cost-effective tool for the screening of drugs or new dietary compounds, such as pre- or probiotics. It will be helpful for researchers, feed producers, or veterinarians when developing innovative non-antibiotic strategies.

  相似文献   
9.
Shiga toxin-producing Escherichia coli (STEC) strains are responsible for human illness. Ruminants are recognized as a major reservoir of STEC, and animal feeds, such as silages, have been pointed out as a possible vehicle for the spread of STEC. The present study aimed to monitor the fate of pathogenic E. coli O26 strains in corn material experimentally inoculated (105 CFU/g) during ensiling, just after silo opening, and after several days of aerobic exposure. The addition of 3 bacterial inoculants, Propionibacterium sp., Lactobacillus buchneri, and Leuconostoc mesenteroides (106 CFU/g), was evaluated for their abilities to control these pathogens. The results showed that E. coli O26 could not survive in corn silage 5 days postensiling, and the 3 inoculants tested did not modify the fate of pathogen survival during ensiling. In the case of direct contamination at silo opening, E. coli O26 could be totally eradicated from corn silage previously inoculated with Leuconostoc mesenteroides. The combination of proper ensiling techniques and the utilization of selected bacterial inoculants appears to represent a good strategy to guarantee nutritional qualities of cattle feed while at the same time limiting the entry of pathogenic E. coli into the epidemiological cycle to improve the microbial safety of the food chain.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号