首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  2007年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
Understanding the mathematical relationships of volume blood flow and wall shear stress with respect to microvessel diameter is necessary for the study of vascular design. Here, for the first time, volume flow and wall shear stress were quantified from axial red blood cell velocity measurements in 104 conjunctival microvessels of 17 normal human volunteers. Measurements were taken with a slit lamp based imaging system from the post capillary side of the bulbar conjunctiva in microvessel diameters ranging from 4 to 24 micrometers. The variation of the velocity profile with diameter was taken into account by using a profile factor function. Volume flow ranged from 5 to 462 pl/s with a mean value of 102 pl/s and gave a second power law best fitting line (r=0.97) deviating significantly from the third power law relation with diameter. The estimated wall shear stress declined hyperbolically (r=0.93) from a maximum of 9.55 N/m(2) at the smallest capillaries, down to a minimum of 0.28 N/m(2) at the higher diameter post capillary venules. The mean wall shear stress value for all microvessels was 1.54 N/m(2).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号