首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   391篇
  免费   13篇
  404篇
  2024年   5篇
  2022年   3篇
  2021年   3篇
  2020年   4篇
  2019年   6篇
  2018年   5篇
  2017年   8篇
  2016年   11篇
  2015年   8篇
  2014年   18篇
  2013年   23篇
  2012年   16篇
  2011年   20篇
  2010年   11篇
  2009年   11篇
  2008年   16篇
  2007年   12篇
  2006年   21篇
  2005年   18篇
  2004年   31篇
  2003年   11篇
  2002年   14篇
  2001年   5篇
  2000年   9篇
  1999年   9篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1992年   2篇
  1991年   10篇
  1990年   8篇
  1989年   3篇
  1988年   2篇
  1987年   9篇
  1986年   6篇
  1985年   6篇
  1983年   6篇
  1982年   5篇
  1981年   3篇
  1980年   6篇
  1979年   2篇
  1978年   6篇
  1977年   2篇
  1976年   4篇
  1975年   2篇
  1972年   2篇
  1951年   1篇
  1945年   1篇
  1919年   1篇
排序方式: 共有404条查询结果,搜索用时 0 毫秒
1.
Incretins, enhancers of insulin secretion, are essential for glucose tolerance, and a reduction in their function might contribute to poor beta-cell function in patients with type-2 diabetes mellitus. However, at supraphysiological doses, the incretin glucagon-like peptide-1 (GLP-1) protects pancreatic beta cells, and inhibits glucagon secretion, gastric emptying and food intake, leading to weight loss. GLP-1 mimetics, which are stable-peptide-based activators of the GLP-1 receptor, and incretin enhancers, which inhibit the incretin-degrading enzyme dipeptidyl peptidase-4, have emerged as therapies for type-2 diabetes and have recently reached the market. The pathophysiological basis the clinical use of these therapeutics is reviewed here.  相似文献   
2.
Summary In comparative tests in a glasshouse, the cortex of oat and rye roots senesced more slowly than the cortex of wheat and barley roots. Of the cereals tested, wheat showed the most rapid rate of root cortical senescence, and the rate was unaffected by inoculation of leaves withErysiphe graminis. The results are discussed in relation to infection by root pathogens.  相似文献   
3.
We examined structure, composition, and endothelial function in cerebral arterioles after 4 wk of chronic renal failure (CRF) in a well-defined murine model (C57BL/6J and apolipoprotein E knockout female mice). We also determined quantitative expression of endothelial nitric oxide synthase (eNOS), phosphorylated eNOS (on serine 1177 and threonine 495), and caveolin-1; quantitative expression of markers of vascular inflammation or oxidative stress [Rock-1, Rock-2, VCAM-1, and peroxisome proliferator-activated receptor-γ (PPARγ)]; and the plasma concentration of L-arginine and asymmetric dimethylarginine (ADMA). Our hypothesis was that endothelial function would be impaired in cerebral arterioles during CRF following either a decrease in NO production (through alteration of eNOS expression or regulation) or an increase in NO degradation (due to oxidative stress or vascular inflammation). Endothelium-dependent relaxation was impaired during CRF, but endothelium-independent relaxation was not. CRF had no effect on cerebral arteriolar structure and composition. Quantitative expressions of eNOS, eNOS phosphorylated on serine 1177, caveolin-1, Rock-1, Rock-2, and VCAM-1 were similar in CRF and non-CRF mice. In contrast, quantitative expression of PPARγ (which exercises a protective role on blood vessels) was significantly lower in CRF mice, whereas quantitative expression of eNOS phosphorylated on the threonine 495 (the inactive form of eNOS) was significantly higher. Lastly, the plasma concentration of ADMA (a uremic toxin and an endogenous inhibitor of eNOS) was elevated and plasma concentration of L-arginine was low in CRF. In conclusion, endothelial function is impaired in a mouse model of early stage CRF. These alterations may be related (at least in part) to a decrease in NO production.  相似文献   
4.
Contemporary textbooks often define evolution in terms of the replication, mutation, and selective retention of DNA sequences, ignoring the contribution of the physical processes involved. In the closing line of The Origin of Species, however, Darwin recognized that natural selection depends on prior more basic living functions, which he merely described as life’s “several powers.” For Darwin these involved the organism’s capacity to maintain itself and to reproduce offspring that preserve its critical functional organization. In modern terms we have come to recognize that this involves the continual generation of complex organic molecules in complex configurations accomplished with the aid of persistent far-from-equilibrium chemical self-organizing and self-assembling processes. But reliable persistence and replication of these processes also requires constantly available constraints and boundary conditions. Organism autonomy further requires that these constraints and co-dependent dynamics are reciprocally produced, each by the other. In this paper I argue that the different constraint-amplifying dynamics of two or more self-organizing processes can be coupled so that they reciprocally generate each other’s critical supportive boundary conditions. This coupling is a higher-order constraint (which can be distributed among components or offloaded onto molecular structures) that effectively constitutes a sign vehicle “interpreted” by the synergistic dynamics of these co-dependent self-organizing process so that they reconstitute this same semiotic-dynamic relationship and its self-reconstituting potential in new substrates. This dynamical co-dependence constitutes Darwin’s “several powers” and is the basis of the biosemiosis that enables evolution.  相似文献   
5.
The Protein Structure Initiative (PSI), funded by the US National Institutes of Health (NIH), provides a framework for the development and systematic evaluation of methods to solve protein structures. Although the PSI and other structural genomics efforts around the world have led to the solution of many new protein structures as well as the development of new methods, methodological bottlenecks still exist and are being addressed in this 'production phase' of PSI.  相似文献   
6.
7.
8.
9.
In order to understand the structural basis for the high thermostability of phytase from Aspergillus fumigatus, its crystal structure was determined at 1.5 A resolution. The overall fold resembles the structure of other phytase enzymes. Aspergillus niger phytase shares 66% sequence identity, however, it is much less heat-resistant. A superimposition of these two structures reveals some significant differences. In particular, substitutions with polar residues appear to remove repulsive ion pair interactions and instead form hydrogen bond interactions, which stabilize the enzyme; the formation of a C-terminal helical capping, induced by arginine residue substitutions also appears to be critical for the enzyme's ability to refold to its active form after denaturation at high temperature. The heat-resilient property of A.fumigatus phytase could be due to the improved stability of regions that are critical for the refolding of the protein; and a heat-resistant A.niger phytase may be achieved by mutating certain critical residues with the equivalent residues in A.fumigatus phytase. Six predicted N-glycosylation sites were observed to be glycosylated from the experimental electron density. Furthermore, the enzyme's catalytic residue His59 was found to be partly phosphorylated and thus showed a reaction intermediate, providing structural insight, which may help understand the catalytic mechanism of the acid phosphatase family. The trap of this catalytic intermediate confirms the two-step catalytic mechanism of the acid histidine phosphatase family.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号