首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   3篇
  36篇
  2019年   2篇
  2013年   3篇
  2012年   1篇
  2011年   8篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1996年   1篇
  1991年   2篇
  1989年   1篇
  1980年   1篇
排序方式: 共有36条查询结果,搜索用时 0 毫秒
1.
Glucokinase (hexokinase IV) continues to be a compelling target for the treatment of type 2 diabetes given the wealth of supporting human genetics data and numerous reports of robust clinical glucose lowering in patients treated with small molecule allosteric activators. Recent work has demonstrated the ability of hepatoselective activators to deliver glucose lowering efficacy with minimal risk of hypoglycemia. While orally administered agents require a considerable degree of passive permeability to promote suitable exposures, there is no such restriction on intravenously delivered drugs. Therefore, minimization of membrane diffusion in the context of an intravenously agent should ensure optimal hepatic targeting and therapeutic index. This work details the identification a hepatoselective GKA exhibiting the aforementioned properties.  相似文献   
2.
To learn whether nitric oxide (NO) inhalation can decrease myocardial ischemia-reperfusion (I/R) injury, we studied a murine model of myocardial infarction (MI). Anesthetized mice underwent left anterior descending coronary artery ligation for 30, 60, or 120 min followed by reperfusion. Mice breathed NO beginning 20 min before reperfusion and continuing thereafter for 24 h. MI size and area at risk were measured, and left ventricular (LV) function was evaluated using echocardiography and invasive hemodynamic measurements. Inhalation of 40 or 80 ppm, but not 20 ppm, NO decreased the ratio of MI size to area at risk. NO inhalation improved LV systolic function, as assessed by echocardiography 24 h after reperfusion, and systolic and diastolic function, as evaluated by hemodynamic measurements 72 h after reperfusion. Myocardial neutrophil infiltration was reduced in mice breathing NO, and neutrophil depletion prevented inhaled NO from reducing myocardial I/R injury. NO inhalation increased arterial nitrite levels but did not change myocardial cGMP levels. Breathing 40 or 80 ppm NO markedly and significantly decreased MI size and improved LV function after ischemia and reperfusion in mice. NO inhalation may represent a novel method to salvage myocardium at risk of I/R injury.  相似文献   
3.
Various structural anomalies of the left ventricular papillary muscles have been observed in recent years. Many of these have been linked to electrocardiographic aberrations. Recently two reports have appeared where the base of the posterior papillary muscle was identified as the source of frequent premature ventricular complexes. In some of these patients these frequent premature ventricular complexes have led to left ventricular dysfunction. In this report a newly discovered structural variant of the anterior papillary muscle is described--the bifid papillary muscle. Furthermore, it is proposed that this bifid papillary muscle is the source of frequent ventricular premature complexes, presenting as bigeminy in a patient with normal left ventricular function.  相似文献   
4.
Prostaglandin D2 (PGD2) is a lipid mediator produced by mast cells, macrophages and Th2 lymphocytes and has been detected in high concentrations in the airways of asthmatic patients. There are two receptors for PGD2, namely the D prostanoid (DP) receptor and the chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2). The proinflammatory effects of PGD2 leading to recruitment of eosinophils and Th2 lymphocytes into inflamed tissues is thought to be predominantly due to action on CRTH2. Several PGD2 metabolites have been described as potent and selective agonists for CRTH2. In this study we have characterized the activity of delta12-PGD2, a product of PGD2 isomerization by albumin. Delta12-PGD2 induced calcium mobilization in CHO cells expressing human CRTH2 receptor, with efficacy and potency similar to those of PGD2. These effects were blocked by the TP/CRTH2 antagonist ramatroban. delta12-PGD2 bound to CRTH2 receptor with a pKi of 7.63, and a 55-fold selectivity for CRTH2 compared to DP. In Th2 lymphocytes, delta12-PGD2 induced calcium mobilization with high potency and an efficacy similar to that of PGD2. delta12-PGD2 also caused activation of eosinophils as measured by shape change. Taken together, these results show that delta12-PGD2 is a potent and selective agonist for CRTH2 receptor and can cause activation of eosinophils and Th2 lymphocytes. These data also confirm the selective effect of other PGD2 metabolites on CRTH2 and illustrate how the metabolism of PGD2 may influence the pattern of leukocyte infiltration at sites of allergic inflammation.  相似文献   
5.
The effect of halofuginone (Halo) on established fibrosis in older mdx dystrophic muscle was investigated. Mice (8 to 9 mo) treated with Halo (or saline in controls) for 5, 10, or 12 wk were assessed weekly for grip strength and voluntary running. Echocardiography was performed at 0, 5, and 10 wk. Respiratory function and exercise-induced muscle damage were tested. Heart, quadriceps, diaphragm, and tibialis anterior muscles were collected to study fibrosis, collagen I and III expression, collagen content using a novel collagenase-digestion method, and cell proliferation. Hepatocyte growth factor and alpha-smooth muscle actin proteins were assayed in quadriceps. Halo decreased fibrosis (diaphragm and quadriceps), collagen I and III expression, collagen protein, and smooth muscle actin content after 10 wk treatment. Muscle-cell proliferation increased at 5 wk, and hepatocyte growth factor increased by 10 wk treatment. Halo markedly improved both cardiac and respiratory function and reduced damage and improved recovery from exercise. The overall impact of established dystrophy and dysfunction in cardiac and skeletal muscles was reduced by Halo treatment. Marked improvements in vital-organ functions implicate Halo as a strong candidate drug to reduce morbidity and mortality in Duchenne muscular dystrophy.  相似文献   
6.
T cell activation is controlled by incompletely defined opposing stimulation and suppression signals that together sustain the balance between optimal host defense against infection and peripheral tolerance. In this article, we explore the impacts of Foxp3(+) regulatory T cell (Treg) suppression in priming Ag-specific T cell activation under conditions of noninfection and infection. We find the transient ablation of Foxp3(+) Tregs unleashes the robust expansion and activation of peptide-stimulated CD8(+) T cells that provide protection against Listeria monocytogenes infection in an Ag-specific fashion. By contrast, Treg ablation had nonsignificant impacts on the CD8(+) T cell response primed by infection with recombinant L. monocytogenes. Similarly, nonrecombinant L. monocytogenes administered with peptide stimulated the expansion and activation of CD8(+) T cells that paralleled the response primed by Treg ablation. Interestingly, these adjuvant properties of L. monocytogenes did not require CD8(+) T cell stimulation by IL-12 produced in response to infection, but instead were associated with sharp reductions in Foxp3(+) Treg suppressive potency. Therefore, Foxp3(+) Tregs impose critical barriers that, when overcome naturally during infection or artificially with ablation, allow the priming of protective Ag-specific CD8(+) T cells.  相似文献   
7.
Reactome http://www.reactome.org, an online curated resource for human pathway data, provides infrastructure for computation across the biologic reaction network. We use Reactome to infer equivalent reactions in multiple nonhuman species, and present data on the reliability of these inferred reactions for the distantly related eukaryote Saccharomyces cerevisiae. Finally, we describe the use of Reactome both as a learning resource and as a computational tool to aid in the interpretation of microarrays and similar large-scale datasets.  相似文献   
8.

Background

Pathogen-specific metabolic pathways may be detected by breath tests based on introduction of stable isotopically-labeled substrates and detection of labeled products in exhaled breath using portable infrared spectrometers.

Methodology/Principal Findings

We tested whether mycobacterial urease activity could be utilized in such a breath test format as the basis of a novel biomarker and diagnostic for pulmonary TB. Sensitized New-Zealand White Rabbits underwent bronchoscopic infection with either Mycobacterium bovis or Mycobacterium tuberculosis. Rabbits were treated with 25 mg/kg of isoniazid (INH) approximately 2 months after infection when significant cavitary lung pathology was present. [13C] urea was instilled directly into the lungs of intubated rabbits at selected time points, exhaled air samples analyzed, and the kinetics of δ13CO2 formation were determined. Samples obtained prior to inoculation served as control samples for background 13CO2 conversion in the rabbit model. 13CO2, from metabolic conversion of [13C]-urea by mycobacterial urease activity, was readily detectable in the exhaled breath of infected rabbits within 15 minutes of administration. Analyses showed a rapid increase in the rate of 13CO2 formation both early in disease and prior to treatment with INH. Following INH treatment, all evaluable rabbits showed a decrease in the rate of 13CO2 formation.

Conclusions/Significance

Urea breath testing may provide a useful diagnostic and biomarker assay for tuberculosis and for treatment response. Future work will test specificity for M. tuberculosis using lung-targeted dry powder inhalation formulations, combined with co-administering oral urease inhibitors together with a saturating oral dose of unlabeled urea, which would prevent the δ13CO2 signal from urease-positive gastrointestinal organisms.  相似文献   
9.
10.
Long‐term trends in ecosystem resource use efficiencies (RUEs) and their controlling factors are key pieces of information for understanding how an ecosystem responds to climate change. We used continuous eddy covariance and microclimate data over the period 1999–2017 from a 120‐year‐old black spruce stand in central Saskatchewan, Canada, to assess interannual variability, long‐term trends, and key controlling factors of gross ecosystem production (GEP) and the RUEs of carbon (CUE = net primary production [NPP]/GEP), light (LUE = GEP/absorbed photosynthetic radiation [APAR]), and water (WUE = GEP/evapotranspiration [E]). At this site, annual GEP has shown an increasing trend over the 19 years (p < 0.01), which may be attributed to rising atmospheric CO2 concentration. Interannual variability in GEP, aside from its increasing trend, was most strongly related to spring temperatures. Associated with the significant increase in annual GEP were relatively small changes in NPP, APAR, and E, so that annual CUE showed a decreasing trend and annual LUE and WUE showed increasing trends over the 19 years. The long‐term trends in the RUEs were related to the increasing CO2 concentration. Further analysis of detrended RUEs showed that their interannual variation was impacted most strongly by air temperature. Two‐factor linear models combining CO2 concentration and air temperature performed well (R2~0.60) in simulating annual RUEs. LUE and WUE were positively correlated both annually and seasonally, while LUE and CUE were mostly negatively correlated. Our results showed divergent long‐term trends among CUE, LUE, and WUE and highlighted the need to account for the combined effects of climatic controls and the ‘CO2 fertilization effect’ on long‐term variations in RUEs. Since most RUE‐based models rely primarily on one resource limitation, the observed patterns of relative change among the three RUEs may have important implications for RUE‐based modeling of C fluxes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号