首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22040篇
  免费   1872篇
  国内免费   1757篇
  25669篇
  2024年   61篇
  2023年   311篇
  2022年   778篇
  2021年   1189篇
  2020年   783篇
  2019年   980篇
  2018年   923篇
  2017年   691篇
  2016年   946篇
  2015年   1379篇
  2014年   1586篇
  2013年   1669篇
  2012年   1987篇
  2011年   1763篇
  2010年   1127篇
  2009年   983篇
  2008年   1061篇
  2007年   928篇
  2006年   806篇
  2005年   716篇
  2004年   648篇
  2003年   533篇
  2002年   484篇
  2001年   396篇
  2000年   333篇
  1999年   306篇
  1998年   182篇
  1997年   186篇
  1996年   173篇
  1995年   140篇
  1994年   141篇
  1993年   108篇
  1992年   190篇
  1991年   145篇
  1990年   123篇
  1989年   120篇
  1988年   87篇
  1987年   102篇
  1986年   90篇
  1985年   74篇
  1984年   72篇
  1983年   58篇
  1982年   34篇
  1981年   21篇
  1980年   30篇
  1979年   27篇
  1977年   23篇
  1976年   16篇
  1973年   17篇
  1972年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Nonstructural protein 5A (NS5A) of hepatitis C virus (HCV) is an indispensable component of the HCV replication and assembly machineries. Although its precise mechanism of action is not yet clear, current evidence indicates that its structure and function are regulated by the cellular peptidylprolyl isomerase cyclophilin A (CyPA). CyPA binds to proline residues in the C-terminal half of NS5A, in a distributed fashion, and modulates the structure of the disordered domains II and III. Cyclophilin inhibitors (CPIs), including cyclosporine (CsA) and its nonimmunosuppressive derivatives, inhibit HCV infection of diverse genotypes, both in vitro and in vivo. Here we report a mechanism by which CPIs inhibit HCV infection and demonstrate that CPIs can suppress HCV assembly in addition to their well-documented inhibitory effect on RNA replication. Although the interaction between NS5A and other viral proteins is not affected by CPIs, RNA binding by NS5A in cell culture-based HCV (HCVcc)-infected cells is significantly inhibited by CPI treatment, and sensitivity of RNA binding is correlated with previously characterized CyPA dependence or CsA sensitivity of HCV mutants. Furthermore, the difference in CyPA dependence between a subgenomic and a full-length replicon of JFH-1 was due, at least in part, to an additional role that CyPA plays in HCV assembly, a conclusion that is supported by experiments with the clinical CPI alisporivir. The host-directed nature and the ability to interfere with more than one step in the HCV life cycle may result in a higher genetic barrier to resistance for this class of HCV inhibitors.  相似文献   
2.
The functioning of the vertebrate eye depends on its absolute size, which is presumably adapted to specific needs. Eye size variation in lidless and spectacled colubrid snakes was investigated, including 839 specimens belonging to 49 genera, 66 species and subspecies. Variations of adult eye diameters (EDs) in both absolute and relative terms between species were correlated with parameters reflecting behavioral ecology. In absolute terms, eye of arboreal species was larger than in terrestrial and semiaquatic species. For diurnal species, EDs of terrestrial species do not differ from semiaquatic species; for nocturnal species the ED of terrestrial species is larger than fossorial species but not different from semiaquatic species. In relative terms, ED did not differ significantly by habitat for diurnal species. Although the ED of terrestrial species is larger than fossorial species there were no differences for nocturnal species between semiaquatic and fossorial snakes. In contrast to other vertebrates studied to date, colubrid EDs in absolute and relative terms are larger in diurnal than in nocturnal species. These observations suggest that among colubrid snakes, eye size variation reflects adaptation to specific habitats, foraging strategies and daily activities, independently of phylogeny. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
3.
Vinyl chloride (VC) is used as an example to demonstrate how biological information can be incorporated into quantitative risk assessment. The information included is the pharmacokinetics of VC in animals and humans and the data-generated hypothesis that VC primarily affects the initiation stage of the multistage carcinogenesis. The emphasis in this paper is on the improvement of risk assessment methodology rather than the risk assessment of VC per se.Sufficient data are available to construct physiologically-based pharmacokinetic models for both animals and humans. These models are used to calculate the metabolized dose corresponding to exposure scenarios in animals and in humans.On the basis of the data on liver angiosarcomas and carcinomas in rats, the cancer risk per unit of metabolized dose is comparable, irrespective of routes (oral or inhalation) of exposure. The tumor response from an intermittent/partial lifetime exposure is shown to be consistent with that from a lifetime exposure when VC is assumed to affect the first (initiation) stage of the multistage carcinogenic process. Furthermore, the risk estimates calculated on the basis of animal data are shown to be consistent with the human experience.  相似文献   
4.
5.
Aim We propose a phylogenetic hypothesis for the marine‐derived sciaenid genus Plagioscion in the context of geomorphology and adaptation to freshwaters of South America, and assess the extent to which contemporary freshwater hydrochemical gradients influence diversification within a widely distributed Plagioscion species, Plagioscion squamosissimus. Location Amazon Basin and South America. Methods Using nuclear and mitochondrial DNA sequence data, phylogenetic analyses were conducted on the five nominal Plagioscion species, together with representatives from Pachyurus and Pachypops, using character and model‐based methods. Genealogical relationships and population genetic structure of 152 P. squamosissimus specimens sampled from the five major rivers and three hydrochemical settings/‘colours’ (i.e. white, black and clear water) of the Amazon Basin were assessed. Results Phylogenetic analyses support the monophyly of Plagioscion in South America and identify two putative cryptic species of Plagioscion. Divergence estimates suggest that the Plagioscion ancestor invaded South America via a northern route during the late Oligocene to early Miocene. Within P. squamosissimus a strong association of haplotype and water colour was observed, together with significant population structure detected between water colours. Main conclusions Our analyses of Plagioscion are consistent with a biogeographic scenario of early Miocene marine incursions into South America. Based on our phylogenetic results, the fossil record, geomorphological history and distributional data of extant Plagioscion species, we propose that marine incursions into western Venezuela between the late Oligocene and early Miocene were responsible for the adaptation to freshwaters in Plagioscion species. Following the termination of the marine incursions during the late Miocene and the establishment of the modern Amazon River, Plagioscion experienced a rapid diversification. Plagioscion squamosissimus arose during that time. The formation of the Amazon River probably facilitated population and range expansions for this species. Further, the large‐scale hydrochemical gradients within the Amazon Basin appear to be acting as ecological barriers maintaining population discontinuities in P. squamosissimus even in the face of gene flow. Our results highlight the importance of divergent natural selection through time in the generation and maintenance of sciaenid diversity in Amazonia.  相似文献   
6.
Kainate receptors (KARs) are a class of ionotropic glutamate receptors that are expressed throughout the central nervous system. The function and subcellular localization of KARs are tightly regulated by accessory proteins. We have previously identified the single-pass transmembrane proteins, Neto1 and Neto2, to be associated with native KARs. In the hippocampus, Neto1, but not Neto2, controls the abundance and modulates the kinetics of postsynaptic KARs. Here we evaluated whether Neto2 regulates synaptic KAR levels in the cerebellum where Neto1 expression is limited to the deep cerebellar nuclei. In the cerebellum, where Neto2 is present abundantly, we found a ∼40% decrease in GluK2-KARs at the postsynaptic density (PSD) of Neto2-null mice. No change, however, was observed in total level of GluK2-KARs, thereby suggesting a critical role of Neto2 on the synaptic localization of cerebellar KARs. The presence of a putative class II PDZ binding motif on Neto2 led us to also investigate whether it interacts with PDZ domain-containing proteins previously implicated in regulating synaptic abundance of KARs. We identified a PDZ-dependent interaction between Neto2 and the scaffolding protein GRIP. Furthermore, coexpression of Neto2 significantly increased the amount of GRIP associated with GluK2, suggesting that Neto2 may promote and/or stabilize GluK2:GRIP interactions. Our results demonstrate that Neto2, like Neto1, is an important auxiliary protein for modulating the synaptic levels of KARs. Moreover, we propose that the interactions of Neto1/2 with various scaffolding proteins is a critical mechanism by which KARs are stabilized at diverse synapses.  相似文献   
7.
A kinin-directed monoclonal antibody to kininogens has been developed by the fusion of murine myeloma cells with mouse splenocytes immunized with bradykinin-conjugated hemocyanin. The hybrid cells were screened by an enzyme-linked immunosorbent assay (ELISA) and a radioimmunoassay (RIA) for the secretion of antibodies to bradykinin. Ascitic fluids were produced and purified by a bradykinin-agarose affinity column. The monoclonal antibody (IgG1) bound to bradykinin, Lys-bradykinin, Met-Lys-bradykinin, and kininogens in ELISA. Further, this target-directed monoclonal antibody recognized purified low and high molecular weight bovine, human, or rat kininogens and T-kininogen in Western blotting. After turpentine-induced acute inflammation, rat kininogen levels increased dramatically in liver and serum as well as in the perfused pituitary, heart, lung, kidney, thymus, and other tissues, as identified by the kinin-directed kininogen antibody in Western blot analyses. The results were confirmed by measuring kinin equivalents of kininogens with a kinin RIA. During an induced inflammatory response, rat kininogens were localized immunohistochemically with the kinin-directed monoclonal antibody in parenchymal cells of liver, in acinar cells and some granular convoluted tubules of submandibular gland, and in the collecting tubules of kidney. Northern and cytoplasmic dot blot analyses using a kinin oligonucleotide probe showed that kininogen mRNA levels in liver but not in other tissues increase after turpentine-induced inflammation. The results indicated that rat kininogens are distributed in various tissues in addition to liver and only liver kininogen is induced by acute inflammation. The target-directed kininogen monoclonal antibody is a useful reagent for studying the structure, localization, and function of kininogens or any protein molecule containing the kinin moiety.  相似文献   
8.
9.
10.
A low-protein diet supplemented with ketoacids maintains nutritional status in patients with diabetic nephropathy. The activation of autophagy has been shown in the skeletal muscle of diabetic and uremic rats. This study aimed to determine whether a low-protein diet supplemented with ketoacids improves muscle atrophy and decreases the increased autophagy observed in rats with type 2 diabetic nephropathy. In this study, 24-week-old Goto-Kakizaki male rats were randomly divided into groups that received either a normal protein diet (NPD group), a low-protein diet (LPD group) or a low-protein diet supplemented with ketoacids (LPD+KA group) for 24 weeks. Age- and weight-matched Wistar rats served as control animals and received a normal protein diet (control group). We found that protein restriction attenuated proteinuria and decreased blood urea nitrogen and serum creatinine levels. Compared with the NPD and LPD groups, the LPD+KA group showed a delay in body weight loss, an attenuation in soleus muscle mass loss and a decrease of the mean cross-sectional area of soleus muscle fibers. The mRNA and protein expression of autophagy-related genes, such as Beclin-1, LC3B, Bnip3, p62 and Cathepsin L, were increased in the soleus muscle of GK rats fed with NPD compared to Wistar rats. Importantly, LPD resulted in a slight reduction in the expression of autophagy-related genes; however, these differences were not statistically significant. In addition, LPD+KA abolished the upregulation of autophagy-related gene expression. Furthermore, the activation of autophagy in the NPD and LPD groups was confirmed by the appearance of autophagosomes or autolysosomes using electron microscopy, when compared with the Control and LPD+KA groups. Our results showed that LPD+KA abolished the activation of autophagy in skeletal muscle and decreased muscle loss in rats with type 2 diabetic nephropathy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号