首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  2016年   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1984年   2篇
  1982年   2篇
  1976年   1篇
排序方式: 共有16条查询结果,搜索用时 281 毫秒
1.
2.
Although dogs are valuable, indeed essential, members of society, they sometimes cause problems of an aesthetic, environmental or public health nature arising from their eliminatory habits. To identify which kinds of dog are more likely to be responsible for these problems, defaecation and urination by domestic dogs under varying degrees of human control were studied in the field. Observations were made between February 1980 and November 1981 in 2 streets, 2 landscaped parks and 2 large rough grass areas. The dogs most likely to defaecate in these public places were those who were accompanied by their owner, but not restricted by being on a lead. There was also an inverse correlation between the number of visits made by dogs on a lead to, and faeces density in, the study sites. Generally, the dogs responsible for most urination were discovered to be those off rather than on a lead, males rather than females, and pedigree males rather than mongrel males. Explanations of these findings, and suggestions for minimising dog fouling of the environment, are offered.  相似文献   
3.
Aims: Recent studies have suggested that Salmonella Typhimurium strains associated with mortality in UK garden birds are significantly different from strains that cause disease in humans and livestock and that wild bird strains may be host adapted. However, without further genomic characterization of these strains, it is not possible to determine whether they are host adapted. The aim of this study was to characterize a representative sample of Salm. Typhimurium strains detected in wild garden birds using multi‐locus sequence typing (MLST) to investigate evolutionary relationships between them. Methods and Results: Multi‐locus sequence typing was performed on nine Salm. Typhimurium strains isolated from wild garden birds. Two sequence types were identified, the most common of which was ST568. Examination of the public Salmonella enterica MLST database revealed that only three other ST568 isolates had been cultured from a human in Scotland. Two further isolates of Salm. Typhimurium were determined to be ST19. Conclusions: Results of MLST analysis suggest that there is a predominant strain of Salm. Typhimurium circulating among garden bird populations in the United Kingdom, which is rarely detected in other species, supporting the hypothesis that this strain is host adapted. Significance and Impact of the Study: Host–pathogen evolution is often assumed to lead to pathogens becoming less virulent to avoid the death of their host; however, infection with ST568 led to high mortality rates among the wild birds examined, which were all found dead at wild bird‐feeding stations. We hypothesize that by attracting unnaturally high densities of birds, wild bird‐feeding stations may facilitate the transmission of ST568 between wild birds, therefore reducing the evolutionary cost of this pathogen killing its host, resulting in a host‐adapted strain with increased virulence.  相似文献   
4.
Campylobacter infections have been reported at prevalences ranging from 2 to 50% in a range of wild bird species, although there have been few studies that have investigated the molecular epidemiology of Campylobacter spp. Consequently, whether wild birds are a source of infection in humans or domestic livestock or are mainly recipients of domestic animal strains and whether separate cycles of infection occur remain unknown. To address these questions, serial cross-sectional surveys of wild bird populations in northern England were carried out over a 2-year period. Fecal samples were collected from 2,084 wild bird individuals and screened for the presence of Campylobacter spp. A total of 56 isolates were recovered from 29 birds sampled at 15 of 167 diverse locales. Campylobacter jejuni, Campylobacter lari, and Campylobacter coli were detected by PCR, and the prevalences of different Campylobacter spp. in different avian families ranged from 0% to 33%. Characterization of 36 C. jejuni isolates by multilocus sequence typing revealed that wild birds carry both livestock-associated and unique strains of C. jejuni. However, the apparent absence of unique wild bird strains of C. jejuni in livestock suggests that the direction of infection is predominantly from livestock to wild birds. C. lari was detected mainly in wild birds sampled in an estuarine or coastal habitat. Fifteen C. lari isolates were analyzed by macrorestriction pulsed-field gel electrophoresis, which revealed genetically diverse populations of C. lari in Eurasian oystercatchers (Haematopus ostralegus) and clonal populations in magpies (Pica pica).Infection with Campylobacter spp. continues to be the leading cause of human infectious intestinal disease in the United Kingdom and has a significant economic impact (39). Consequently, there is a continuing effort to identify effective control methods. The majority of human infections (∼90%) are caused by Campylobacter jejuni subsp. jejuni (46). Other Campylobacter species, including Campylobacter coli and Campylobacter lari, can also cause enteritis in humans, but their prevalence is lower. Most C. jejuni infections are believed to result from consumption of contaminated food, including poultry meat (27, 40), red meat (52), and milk (13), which is thought to be contaminated primarily by feces. It is well established that most livestock species, including poultry, ruminants, and pigs, carry C. jejuni asymptomatically (27), making control at the farm level difficult. However, the epidemiology of C. jejuni cannot be explained solely by food-borne exposure; C. jejuni has also been isolated from a range of environmental samples, including samples of soil, water, sand, and the feces of a number of wildlife species, including wild birds (1-3). However, the role that non-food-borne exposure plays in the epidemiology of C. jejuni is currently not well defined.High prevalences of Campylobacter species infections have been found in a wide range of wild bird species, although there is great variation between taxa (2, 4, 7, 16, 35, 47, 48). Given their ability to fly long distances and their ubiquity, wild birds have the potential to play an important role in the epidemiology and evolution of Campylobacter spp. However, whether wild birds are a source of infection for humans or domestic livestock or are mainly recipients of domestic animal strains or, indeed, whether separate cycles of infection occur remain unknown. These questions remain unanswered in part because investigations of the epidemiology of Campylobacter spp. have been complicated by their high inter- and intraspecies genetic diversity (6).The methods that have been routinely used to characterize Campylobacter isolates are restricted due to genomic instability in Campylobacter populations (10, 38, 45). Multilocus sequence typing (MLST) is a method that has the advantage of being objective since it is sequence based, which allows comparison of isolates from different laboratories and accurate determination of relationships between isolates from diverse sources (11). MLST studies of C. jejuni in farm animals and the environment, including wildlife, suggest that some strains may be associated with particular host groups (6, 10, 15, 30). However, in the same studies other strains were found to occur in several host species or habitats. Few studies have investigated the molecular epidemiology of Campylobacter infection in wild bird populations using MLST, and because only a relatively small number of isolates from wild birds have been characterized by MLST, conclusions have not been drawn yet about how wild bird isolates fit into the overall phylogenetic scheme or whether wild birds act as reservoirs, amplifiers, or merely indicators of infection of domestic animals with zoonotic genotypes.In the current study a large cross-sectional survey of wild bird populations in northern England was undertaken to investigate the epidemiology of Campylobacter infection. Previous studies that have focused on the epidemiology of Campylobacter spp. solely in wild birds have investigated either a narrow range of taxonomic groups (2, 5, 17, 23, 29, 33, 43, 50) or wild birds from a limited range of habitats (18, 25, 48). Studies that have investigated a broad range of wild bird species have used Campylobacter characterization techniques that do not allow conclusions about possible host associations to be drawn or comparison of the genetic diversity of isolates between studies (21, 25, 34, 47, 53). Therefore, the aims of this study were (i) to determine the host range and prevalence of Campylobacter spp. in a wild bird population and (ii) through molecular characterization of isolates to determine whether wild birds were a likely source of infection in humans or domestic livestock and whether separate cycles of infection with host-adapted strains of Campylobacter spp. were maintained in the wild bird population.  相似文献   
5.

Background  

Squirrel poxvirus (SQPV) is highly pathogenic to red squirrels (Sciurus vulgaris), and is a significant contributing factor to the local extinction of the species in most parts of England and Wales, where infection is endemic in Eastern grey squirrel (Sciurus carolinensis) populations. Although a nested PCR assay has been used successfully to study the epidemiology of SQPV, samples have a long processing time and the assay is not quantifiable.  相似文献   
6.
Finch trichomonosis emerged in Great Britain in 2005 and led to epidemic mortality and a significant population decline of greenfinches, Carduelis chloris and chaffinches, Fringilla coelebs, in the central and western counties of England and Wales in the autumn of 2006. In this article, we show continued epidemic spread of the disease with a pronounced shift in geographical distribution towards eastern England in 2007. This was followed by international spread to southern Fennoscandia where cases were confirmed at multiple sites in the summer of 2008. Sequence data of the ITS1/5.8S/ITS2 ribosomal region and part of the small subunit (SSU) rRNA gene showed no variation between the British and Fennoscandian parasite strains of Trichomonas gallinae. Epidemiological and historical ring return data support bird migration as a plausible mechanism for the observed pattern of disease spread, and suggest the chaffinch as the most likely primary vector. This finding is novel since, although intuitive, confirmed disease spread by migratory birds is very rare and, when it has been recognised, this has generally been for diseases caused by viral pathogens. We believe this to be the first documented case of the spread of a protozoal emerging infectious disease by migrating birds.  相似文献   
7.
David F.  Chantrey Lance  Workman 《Ibis》1984,126(3):366-371
The response was observed of territory-holding male European Robins ETithacus rubecula to red— and brown-breasted model Robins which were presented either simultaneously with tape-recorded Robin song, or with no song. Robins displayed and sang at the silent red-breasted model, but sang and displayed much more at the models that were presented with song. It is suggested that, while the red breast is one important feature of Robins eliciting aggressive behaviour, song is also important. The relationship of these findings to studies of stimulus features eliciting behaviour in other species is discussed.  相似文献   
8.
9.
Emerging infectious diseases are increasingly cited as threats to wildlife, livestock and humans alike. They can threaten geographically isolated or critically endangered wildlife populations; however, relatively few studies have clearly demonstrated the extent to which emerging diseases can impact populations of common wildlife species. Here, we report the impact of an emerging protozoal disease on British populations of greenfinch Carduelis chloris and chaffinch Fringilla coelebs, two of the most common birds in Britain. Morphological and molecular analyses showed this to be due to Trichomonas gallinae. Trichomonosis emerged as a novel fatal disease of finches in Britain in 2005 and rapidly became epidemic within greenfinch, and to a lesser extent chaffinch, populations in 2006. By 2007, breeding populations of greenfinches and chaffinches in the geographic region of highest disease incidence had decreased by 35% and 21% respectively, representing mortality in excess of half a million birds. In contrast, declines were less pronounced or absent in these species in regions where the disease was found in intermediate or low incidence. Also, populations of dunnock Prunella modularis, which similarly feeds in gardens, but in which T. gallinae was rarely recorded, did not decline. This is the first trichomonosis epidemic reported in the scientific literature to negatively impact populations of free-ranging non-columbiform species, and such levels of mortality and decline due to an emerging infectious disease are unprecedented in British wild bird populations. This disease emergence event demonstrates the potential for a protozoan parasite to jump avian host taxonomic groups with dramatic effect over a short time period.  相似文献   
10.
Squirrelpox virus (SQPV) shows little evidence for morbidity or mortality in North American grey squirrels (Sciurus carolinensis), in which the virus is endemic. However, more recently the virus has emerged to cause epidemics with high mortality in Eurasian red squirrels (S. vulgaris) in Great Britain, which are now threatened. Here we report the genome sequence of SQPV. Comparison with other Poxviridae revealed a core set of poxvirus genes, the phylogeny of which showed SQPV to be in a new Chordopoxvirus subfamily between the Molluscipoxviruses and Parapoxviruses. A number of SQPV genes were related to virulence, including three major histocomaptibility class I homologs, and one CD47 homolog. In addition, a novel potential virulence factor showing homology to mammalian oligoadenylate synthetase (OAS) was identified. This family of proteins normally causes activation of an endoribonuclease (RNaseL) within infected cells. The putative function of this novel SQPV protein was predicted in silico.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号