首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2011年   1篇
  2003年   1篇
  1991年   1篇
  1966年   1篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
Dissociation constants of Escherichia coli adenylosuccinate synthetase with IMP, GTP, adenylosuccinate, and AMP (a competitive inhibitor for IMP) were determined by measuring the extent of quenching of the intrinsic tryptophan fluorescence of the enzyme. The enzyme has one binding site for each of these ligands. Aspartate and GDP did not quench the fluorescence to any great extent, and their dissociation constants could not be determined. These ligand binding studies were generally supportive of the kinetic mechanism proposed earlier for the enzyme. Cys291 was modified with the fluorescent chromophores N-(iodoacetylaminoethyl)-5-naphthylamine-1-sulfonate and tetramethylrhodamine maleimide in order to measure enzyme conformational changes attending ligand binding. The excitation and emission spectra of these fluorophores are not altered by the addition of active site binding ligands. TbGTP and TbGDP were used as native reporter groups, and changes in their fluorescence on complexing with the enzyme and various ligands made it possible to detect conformational changes occurring at the active site. Evidence is presented for abortive complexes of the type: enzyme-TbGTP-adenylosuccinate and enzyme-TbGTP-adenylosuccinate-aspartate. These results suggest that the IMP and aspartate binding sites are spatially separated.  相似文献   
2.
p53 is essential for cell cycle arrest and apoptosis induction while insulin receptor (IR) signaling is important for cell metabolism and proliferation and found upregulated in cancers. While IR has recently been found to be involved in apoptosis, p53 induction or apoptosis mediated through IR signaling activation has never been documented. Here, we report that the IR signaling pathway, particularly the IR-MEK pathway, mediates biological and biochemical changes in p53 and apoptosis in tumor cells. Specifically, natural compound penta-O-galloyl-α-d-glucopyranose (α-PGG), a previously characterized IR signaling activator, induced apoptosis in RKO cells without significantly affecting its normal counterpart FHC cells. α-PGG induced apoptosis in RKO cells through p53, Bax and caspase 3. Importantly, α-PGG’s ability to elevate p53 was diminished by IR inhibitor and IR-siRNA, suggesting a non-conventional role of IR as being involved in p53 induction. Further studies revealed that α-PGG activated MEK, a downstream signaling factor of IR. Blocking MEK significantly suppressed α-PGG-induced p53 and Bax elevation. All these results suggested that α-PGG induced p53, Bax, and apoptosis through the IR-MEK signaling pathway. The unique activity of α-PGG, a novel IR phosphorylation and apoptosis inducer, may offer a new therapeutic strategy for eliciting apoptotic signal and inhibiting cancer growth.  相似文献   
3.
4.
In this paper, we present an objective method for localization of proteins in blood brain barrier (BBB) vasculature using standard immunohistochemistry (IHC) techniques and bright-field microscopy. Images from the hippocampal region at the BBB are acquired using bright-field microscopy and subjected to our segmentation pipeline which is designed to automatically identify and segment microvessels containing the protein glucose transporter 1 (GLUT1). Gabor filtering and k-means clustering are employed to isolate potential vascular structures within cryosectioned slabs of the hippocampus, which are subsequently subjected to feature extraction followed by classification via decision forest. The false positive rate (FPR) of microvessel classification is characterized using synthetic and non-synthetic IHC image data for image entropies ranging between 3 and 8 bits. The average FPR for synthetic and non-synthetic IHC image data was found to be 5.48% and 5.04%, respectively.  相似文献   
5.
Restoration of degraded land is recognized by the international community as an important way of enhancing both biodiversity and ecosystem services, but more information is needed about its costs and benefits. In Cambridgeshire, U.K., a long-term initiative to convert drained, intensively farmed arable land to a wetland habitat mosaic is driven by a desire both to prevent biodiversity loss from the nationally important Wicken Fen National Nature Reserve (Wicken Fen NNR) and to increase the provision of ecosystem services. We evaluated the changes in ecosystem service delivery resulting from this land conversion, using a new Toolkit for Ecosystem Service Site-based Assessment (TESSA) to estimate biophysical and monetary values of ecosystem services provided by the restored wetland mosaic compared with the former arable land. Overall results suggest that restoration is associated with a net gain to society as a whole of $199 ha−1y−1, for a one-off investment in restoration of $2320 ha−1. Restoration has led to an estimated loss of arable production of $2040 ha−1y−1, but estimated gains of $671 ha−1y−1 in nature-based recreation, $120 ha−1y−1 from grazing, $48 ha−1y−1 from flood protection, and a reduction in greenhouse gas (GHG) emissions worth an estimated $72 ha−1y−1. Management costs have also declined by an estimated $1325 ha−1y−1. Despite uncertainties associated with all measured values and the conservative assumptions used, we conclude that there was a substantial gain to society as a whole from this land-use conversion. The beneficiaries also changed from local arable farmers under arable production to graziers, countryside users from towns and villages, and the global community, under restoration. We emphasize that the values reported here are not necessarily transferable to other sites.  相似文献   
6.

Background

In recent years, the use of genomic information in livestock species for genetic improvement, association studies and many other fields has become routine. In order to accommodate different market requirements in terms of genotyping cost, manufacturers of single nucleotide polymorphism (SNP) arrays, private companies and international consortia have developed a large number of arrays with different content and different SNP density. The number of currently available SNP arrays differs among species: ranging from one for goats to more than ten for cattle, and the number of arrays available is increasing rapidly. However, there is limited or no effort to standardize and integrate array- specific (e.g. SNP IDs, allele coding) and species-specific (i.e. past and current assemblies) SNP information.

Results

Here we present SNPchiMp v.3, a solution to these issues for the six major livestock species (cow, pig, horse, sheep, goat and chicken). Original data was collected directly from SNP array producers and specific international genome consortia, and stored in a MySQL database. The database was then linked to an open-access web tool and to public databases. SNPchiMp v.3 ensures fast access to the database (retrieving within/across SNP array data) and the possibility of annotating SNP array data in a user-friendly fashion.

Conclusions

This platform allows easy integration and standardization, and it is aimed at both industry and research. It also enables users to easily link the information available from the array producer with data in public databases, without the need of additional bioinformatics tools or pipelines. In recognition of the open-access use of Ensembl resources, SNPchiMp v.3 was officially credited as an Ensembl E!mpowered tool. Availability at http://bioinformatics.tecnoparco.org/SNPchimp.  相似文献   
7.
PIKfyve, a kinase that displays specificity for phosphatidylinositol (PtdIns), PtdIns 3-phosphate (3-P), and proteins, is important in multivesicular body/late endocytic function. Enzymatically inactive PIKfyve mutants elicit enormous dilation of late endocytic structures, suggesting a role for PIKfyve in endosome-to-trans-Golgi network (TGN) membrane retrieval. Here we report that p40, a Rab9 effector reported previously to bind Rab9-GTP and stimulate endosome-to-TGN transport, interacts with PIKfyve as determined by yeast two-hybrid assays, glutathione S-transferase (GST) pull-down assays, and co-immunoprecipitation in doubly transfected HEK293 cells. The interaction engages the PIKfyve chaperonin domain and four out of the six C-terminally positioned kelch repeats in p40. Differential centrifugation in a HEK293 cell line, stably expressing PIKfyveWT, showed the membrane-associated immunoreactive p40 co-sedimenting with PIKfyve in the high speed pellet (HSP) fraction. Remarkably, similar analysis in a HEK293 cell line stably expressing dominant-negative kinase-deficient PIKfyveK1831E demonstrated a marked depletion of p40 from the HSP fraction. GST-p40 failed to specifically associate with the PIKfyve lipid products PtdIns 5-P and PtdIns 3,5-P2 in a liposome binding assay but was found to be an in vitro substrate of the PIKfyve serine kinase activity. A band with the p40 electrophoretic mobility was found to react with a phosphoserine-specific antibody mainly in the PIKfyveWT-containing fractions obtained by density gradient sedimentation of total membranes from PIKfyveWT-expressing HEK293 cells. Together these results identify the Rab9 effector p40 as a PIKfyve partner and suggest that p40-PIKfyve interaction and the subsequent PIKfyve-catalyzed p40 phosphorylation anchor p40 to discrete membranes facilitating late endosome-to-TGN transport.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号