首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   155篇
  免费   13篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   9篇
  2014年   4篇
  2013年   10篇
  2012年   12篇
  2011年   13篇
  2010年   5篇
  2009年   3篇
  2008年   11篇
  2007年   13篇
  2006年   7篇
  2005年   9篇
  2004年   7篇
  2003年   5篇
  2002年   1篇
  2001年   2篇
  1999年   3篇
  1996年   1篇
  1991年   2篇
  1989年   1篇
  1986年   3篇
  1985年   4篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   6篇
  1978年   4篇
  1977年   4篇
  1976年   3篇
  1975年   3篇
  1974年   1篇
  1971年   4篇
  1970年   1篇
  1967年   1篇
排序方式: 共有168条查询结果,搜索用时 15 毫秒
1.
2.
We have previously reported changes in the chemical composition of cell surface membranes in diabetic rats (Chandramoulis, V. and Carter, Jr., J. R. (1975) Diabetes 24, 257-262 [1]). To examine the possible implications of these changes for cell surface structures, we have measured the binding of labeled lectins and desialylated glycoproteins to plasma membranes prepared from the livers of streptozotocin--diabetic and control rats. Lectins were chosen which have affinities for different carbohydrate moieties. The binding of ricin and concanavalin A to liver cell membranes from the diabetic rats was significantly reduced, but no change in the binding of wheat germ agglutinin was noted. Binding of desialylated thyrozine--binding globulin, previously shown to be dependent on membrane sialic acid residues, ws strongly suggest that insulin deficiency leads to generalized changes in cell surfaced glycoproteins, at least in this animal model of diabetes.  相似文献   
3.
Follicle-stimulating hormone of a high state of physicochemical and biological purity was isolated from acetone-preserved human pituitary glands. The follicle-stimulating hormone was dissociated into alpha and beta subunits by treatment with 8 M urea and the subunits were separated by ion exchange chromatography on DEAE-Sephadex A-25. The subunits were freed of undissociated or reassociated follicle-stimulating hormone by gel filtration on Sephadex G-100. For the establishment of the primary amino acid sequence, the alpha subunit was reduced and either carboxyamidomethylated or S-aminoethylated prior to a thermolytic or a tryptic digestion. Each digest was gel filtered on a column of Sephadex G-50 to separate the glycopeptides from the peptides. The glycopeptides and the peptides were purified further by sequential gel filtration on Sephadex G-25, G-15, and Bio-Gel-P-2 and were isolated by high voltage electrophoresis at pH 6, 3.5, and 2. The purity of the isolated peptides was ascertained further by amino acid analysis. The amino acid sequences of the peptides were determined by Edman degradation followed by subtractive amino acid analysis. COOH-terminal sequences were established by digestion with carboxypeptidases A and B. The primary amino acid sequence of human follicle-stimulating hormone-alpha is identical to that of human chorionic gonadotropin-alpha and differs from that of human luteinizing hormone-alpha in having the tripeptide Ala-Pro-Asx- at the NH2-terminal end.  相似文献   
4.

Background

The mechanism of how the hydrophilic threefold channel (C3) of ferritin nanocages facilitates diffusion of diverse metal ions into the internal cavity remains poorly explored.

Methods

Computational modeling and free energy estimations were carried out on R. catesbeiana H´ ferritin. Transit features and associated energetics for Fe2+, Mg2+, Zn2+ ions through the C3 channel have been examined.

Results

We highlight that iron conduction requires the involvement of two Fe2+ ions in the channel. In such doubly occupied configuration, as observed in X-ray structures, Fe2+ is displaced from the internal site (stabilized by D127) at lower energetic cost. Moreover, comparison of Fe2+, Mg2+ and Zn2+ transit features shows that E130 geometric constriction provides not only an electrostatic anchor to the incoming ions but also differentially influence their diffusion kinetics.

Conclusions

Overall, the study provides insights into Fe2+ entry mechanism and characteristic features of metal-protein interactions that influence the metal ions passage. The dynamics data suggest that E130 may act as a metal selectivity gate. This implicates an ion-specific entry mechanism through the channel with the distinct diffusion kinetics being the discriminating factor.

General Significance

Ferritin nanocages not only act as biological iron reservoirs but also have gained importance in material science as template scaffolds for synthesizing metal nanoparticles. This study provides mechanistic understanding on the conduction of different metal ions through the channel.  相似文献   
5.
Five N10-substituted phenoxazines having different R groups and -Cl substitution at C-2 were found to bind to calf -thymus DNA and plasmid DNA with high affinity as seen from by UV and CD spectroscopy. The effect of phenoxazines on DNA were studied using DNA-ethidium bromide complexes. Upon addition of phenoxazines, the ethidium bromide dissociated from the complex with DNA. The binding of phenoxazines to plasmid PUC18 reduced ethidium bromide binding as seen from the agarose gel electrophoresis. Butyl, and propyl substituted phenoxazines were able to release more ethidium bromide compared with that of acetyl substitution. Addition of phenoxazines also enhanced melting temperature of DNA.  相似文献   
6.
The mechanosensitive channel of large conductance (MscL) is a protein that responds to membrane tension by opening a transient pore during osmotic downshock. Due to its large pore size and functional reconstitution into lipid membranes, MscL has been proposed as a promising artificial nanovalve suitable for biotechnological applications. For example, site-specific mutations and tailored chemical modifications have shown how MscL channel gating can be triggered in the absence of tension by introducing charged residues at the hydrophobic pore level. Recently, engineered MscL proteins responsive to stimuli like pH or light have been reported. Inspired by experiments, we present a thorough computational study aiming at describing, with atomistic detail, the artificial gating mechanism and the molecular transport properties of a light-actuated bacterial MscL channel, in which a charge-induced gating mechanism has been enabled through the selective cleavage of photo-sensitive alkylating agents. Properties such as structural transitions, pore dimension, ion flux and selectivity have been carefully analyzed. Besides, the effects of charge on alternative sites of the channel with respect to those already reported have been addressed. Overall, our results provide useful molecular insights into the structural events accompanying the engineered MscL channel gating and the interplay of electrostatic effects, channel opening and permeation properties. In addition, we describe how the experimentally observed ionic current in a single-subunit charged MscL mutant is obtained through a hydrophobicity breaking mechanism involving an asymmetric inter-subunit motion.  相似文献   
7.
8.
Liver fatty acid-binding protein (L-FABP) is a highly conserved key factor in lipid metabolism. Amino acid replacements in L-FABP might alter its function and thereby affect glucose metabolism in lipid-exposed subjects, as indicated by studies in L-FABP knockout mice. Amino acid replacements in L-FABP were investigated in a cohort of 1,453 Caucasian subjects. Endogenous glucose production (EGP), gluconeogenesis, and glycogenolysis were measured in healthy carriers of the only common Thr(94)-to-Ala amino acid replacement (Ala/Ala(94)) vs. age-, sex-, and BMI-matched wild-type (Thr/Thr(94)) controls at baseline and after 320-min lipid/heparin-somatostatin-insulin-glucagon clamps (n = 18). Whole body glucose disposal was further investigated (subset; n = 13) using euglycemic-hyperinsulinemic clamps without and with lipid/heparin infusion. In the entire cohort, the only common Ala/Ala(94) mutation was significantly associated with reduced body weight, which is in agreement with a previous report. In lipid-exposed, individually matched subjects there was a genotype vs. lipid-treatment interaction for EGP (P = 0.009) driven mainly by reduced glycogenolysis in Ala/Ala(94) carriers (0.46 +/- 0.05 vs. 0.59 +/- 0.05 mgxkg(-1)xmin(-1), P = 0.013). The lipid-induced elevation of plasma glucose levels was smaller in Ala/Ala(94) carriers compared with wild types (P < 0.0001). Whole body glucose disposal was not different between lipid-exposed L-FABP genotypes. In summary, the Ala/Ala(94)-mutation contributed significantly to reduced glycogenolysis and less severe hyperglycemia in lipid-exposed humans and was further associated with reduced body weight in a large cohort. Data clearly show that investigation of L-FABP phenotypes in the basal overnight-fasted state yielded incomplete information, and a challenge test was essential to detect phenotypical differences in glucose metabolism between L-FABP genotypes.  相似文献   
9.
Most, if not all, of the neocortex is multisensory, but the mechanisms by which different cortical areas - association versus sensory, for instance - integrate multisensory inputs are not known. The study by Lakatos et al. reveals that, in the primary auditory cortex, the phase of neural oscillations is reset by somatosensory inputs, and subsequent auditory inputs are enhanced or suppressed, depending on their timing relative to the oscillatory cycle.  相似文献   
10.
Plasmodium falciparum encounters frequent environmental challenges during its life cycle which makes productive protein folding immensely challenging for its metastable proteome. To identify the important components of protein folding machinery involved in maintaining P. falciparum proteome, we performed a proteome‐wide phylogenetic profiling across various species. We found that except HSP110, the parasite lost all other cytosolic nucleotide exchange factors essential for regulating HSP70 which is the centrum of the protein folding network. Evolutionary and structural analysis shows that besides its canonical interaction with HSP70, PfHSP110 has acquired sequence insertions for additional dynamic interactions. Molecular co‐evolution profile depicts that the co‐evolving proteins of PfHSP110 belong to distinct pathways like genetic variation, DNA repair, fatty acid biosynthesis, protein modification/trafficking, molecular motions, and apoptosis. These proteins exhibit unique physiochemical properties like large size, high iso‐electric point, low solubility, and antigenicity, hence require PfHSP110 chaperoning to attain functional state. Co‐evolving protein interaction network suggests that PfHSP110 serves as an important hub to coordinate protein quality control, survival, and immune evasion pathways in the parasite. Overall, our findings highlight potential accessory roles of PfHSP110 that may provide survival advantage to the parasite during its lifecycle and febrile conditions. The data also open avenues for experimental validation of auxiliary functions of PfHSP110 and their exploration for design of better antimalarial strategies. Proteins 2015; 83:1513–1525. © 2015 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号