首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   2篇
  32篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2014年   1篇
  2013年   2篇
  2012年   4篇
  2011年   5篇
  2009年   3篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   5篇
  2003年   2篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
2.
ABSTRACT

A laboratory-scale biofilter unit packed with a mixture of compost, sugarcane bagasse, and granulated activated carbon (GAC) in the ratio of 55:30:15 by weight was used for a biofiltration study of air stream containing benzene, toluene, ethylbenzene, and o-xylene (BTEX). The effect of superficial velocity on mass transfer coefficient for the packing was studied by maintaining gas flow rates of 3, 4, 5, 6, and 8 L min?1 for inlet concentrations of 0.1, 0.4, and 0.8 g m?3 for each of benzene, toluene, ethylbenzene, and o-xylene. The maximum elimination capacity was found to be 20.92, 22.72, 20.73, and 18.94 g m?3 h?1 for BTEX, respectively, for stated flow rates. Removal efficiency of BTEX decreased from 99% to 71% for increasing inlet concentration from 0.1 to 0.8 g m?3. Gas film mass transfer coefficient predicted by modified Onda's equation was within ±10% of the experimental values.  相似文献   
3.

Motivation

Computational simulation of protein-protein docking can expedite the process of molecular modeling and drug discovery. This paper reports on our new F2 Dock protocol which improves the state of the art in initial stage rigid body exhaustive docking search, scoring and ranking by introducing improvements in the shape-complementarity and electrostatics affinity functions, a new knowledge-based interface propensity term with FFT formulation, a set of novel knowledge-based filters and finally a solvation energy (GBSA) based reranking technique. Our algorithms are based on highly efficient data structures including the dynamic packing grids and octrees which significantly speed up the computations and also provide guaranteed bounds on approximation error.

Results

The improved affinity functions show superior performance compared to their traditional counterparts in finding correct docking poses at higher ranks. We found that the new filters and the GBSA based reranking individually and in combination significantly improve the accuracy of docking predictions with only minor increase in computation time. We compared F2 Dock 2.0 with ZDock 3.0.2 and found improvements over it, specifically among 176 complexes in ZLab Benchmark 4.0, F2 Dock 2.0 finds a near-native solution as the top prediction for 22 complexes; where ZDock 3.0.2 does so for 13 complexes. F2 Dock 2.0 finds a near-native solution within the top 1000 predictions for 106 complexes as opposed to 104 complexes for ZDock 3.0.2. However, there are 17 and 15 complexes where F2 Dock 2.0 finds a solution but ZDock 3.0.2 does not and vice versa; which indicates that the two docking protocols can also complement each other.

Availability

The docking protocol has been implemented as a server with a graphical client (TexMol) which allows the user to manage multiple docking jobs, and visualize the docked poses and interfaces. Both the server and client are available for download. Server: http://www.cs.utexas.edu/~bajaj/cvc/software/f2dock.shtml. Client: http://www.cs.utexas.edu/~bajaj/cvc/software/f2dockclient.shtml.  相似文献   
4.
Manual selection of single particles in images acquired using cryo-electron microscopy (cryoEM) will become a significant bottleneck when datasets of a hundred thousand or even a million particles are required for structure determination at near atomic resolution. Algorithm development of fully automated particle selection is thus an important research objective in the cryoEM field. A number of research groups are making promising new advances in this area. Evaluation of algorithms using a standard set of cryoEM images is an essential aspect of this algorithm development. With this goal in mind, a particle selection "bakeoff" was included in the program of the Multidisciplinary Workshop on Automatic Particle Selection for cryoEM. Twelve groups participated by submitting the results of testing their own algorithms on a common dataset. The dataset consisted of 82 defocus pairs of high-magnification micrographs, containing keyhole limpet hemocyanin particles, acquired using cryoEM. The results of the bakeoff are presented in this paper along with a summary of the discussion from the workshop. It was agreed that establishing benchmark particles and using bakeoffs to evaluate algorithms are useful in promoting algorithm development for fully automated particle selection, and that the infrastructure set up to support the bakeoff should be maintained and extended to include larger and more varied datasets, and more criteria for future evaluations.  相似文献   
5.
Due to the sensitivity of biological sample to the radiation damage, the low dose imaging conditions used for electron microscopy result in extremely noisy images. The processes of digitization, image alignment, and 3D reconstruction also introduce additional sources of noise in the final 3D structure. In this paper, we investigate the effectiveness of a bilateral denoising filter in various biological electron microscopy applications. In contrast to the conventional low pass filters, which inevitably smooth out both noise and structural features simultaneously, we found that bilateral filter holds a distinct advantage in being capable of effectively suppressing noise without blurring the high resolution details. In as much, we have applied this technique to individual micrographs, entire 3D reconstructions, segmented proteins, and tomographic reconstructions.  相似文献   
6.
The functions of proteins are often realized through their mutual interactions. Determining a relative transformation for a pair of proteins and their conformations which form a stable complex, reproducible in nature, is known as docking. It is an important step in drug design, structure determination, and understanding function and structure relationships. In this paper, we extend our nonuniform fast Fourier transform-based docking algorithm to include an adaptive search phase (both translational and rotational) and thereby speed up its execution. We have also implemented a multithreaded version of the adaptive docking algorithm for even faster execution on multicore machines. We call this protein-protein docking code F2Dock (F2 = Fast Fourier). We have calibrated F2Dock based on an extensive experimental study on a list of benchmark complexes and conclude that F2Dock works very well in practice. Though all docking results reported in this paper use shape complementarity and Coulombic-potential-based scores only, F2Dock is structured to incorporate Lennard-Jones potential and reranking docking solutions based on desolvation energy .  相似文献   
7.
In this paper, we present an iterative algorithm for reconstructing a three-dimensional density function from a set of two dimensional electron microscopy images. By minimizing an energy functional consisting of a fidelity term and a regularization term, an L2-gradient flow is derived. The flow is integrated by a finite element method in the spatial direction and an explicit Euler scheme in the temporal direction. Our method compares favorably with those of the weighted back projection, Fourier method, algebraic reconstruction technique and simultaneous iterative reconstruction technique.  相似文献   
8.
9.
The tetramer is the most important form for acetylcholinesterase in physiological conditions, i.e., in the neuromuscular junction and the nervous system. It is important to study the diffusion of acetylcholine to the active sites of the tetrameric enzyme to understand the overall signal transduction process in these cellular components. Crystallographic studies revealed two different forms of tetramers, suggesting a flexible tetramer model for acetylcholinesterase. Using a recently developed finite element solver for the steady-state Smoluchowski equation, we have calculated the reaction rate for three mouse acetylcholinesterase tetramers using these two crystal structures and an intermediate structure as templates. Our results show that the reaction rates differ for different individual active sites in the compact tetramer crystal structure, and the rates are similar for different individual active sites in the other crystal structure and the intermediate structure. In the limit of zero salt, the reaction rates per active site for the tetramers are the same as that for the monomer, whereas at higher ionic strength, the rates per active site for the tetramers are approximately 67%-75% of the rate for the monomer. By analyzing the effect of electrostatic forces on ACh diffusion, we find that electrostatic forces play an even more important role for the tetramers than for the monomer. This study also shows that the finite element solver is well suited for solving the diffusion problem within complicated geometries.  相似文献   
10.
This article describes the development and implementation of algorithms to study diffusion in biomolecular systems using continuum mechanics equations. Specifically, finite element methods have been developed to solve the steady-state Smoluchowski equation to calculate ligand binding rate constants for large biomolecules. The resulting software has been validated and applied to mouse acetylcholinesterase. Rates for inhibitor binding to mAChE were calculated at various ionic strengths with several different reaction criteria. The calculated rates were compared with experimental data and show very good agreement when the correct reaction criterion is used. Additionally, these finite element methods require significantly less computational resources than existing particle-based Brownian dynamics methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号