首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2008年   2篇
  2004年   4篇
  2003年   2篇
  1975年   1篇
  1956年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.

Background

50% of leprosy patients suffer from episodes of Type 1/ reversal reactions (RR) and Type 2/ Erythema Nodosum Leprosum (ENL) reactions which lead to morbidity and nerve damage. CD4+ subsets of Th17 cells and CD25+FOXP3+ regulatory T cells (Tregs) have been shown to play a major role in disease associated immunopathology and in stable leprosy as reported by us and others. The aim of our study was to analyze their role in leprosy reactions.

Methodology and Principle Findings

Quantitative reverse transcribed PCR (qPCR), flowcytometry and ELISA were used to respectively investigate gene expression, cell phenotypes and supernatant levels of cytokines in antigen stimulated PBMC cultures in patients with stable disease and those undergoing leprosy reactions. Both types of reactions are associated with significant increase of Th17 cells and associated cytokines IL-17A, IL-17F, IL-21, IL-23 and chemokines CCL20, CCL22 as compared to matching stable forms of leprosy. Concurrently patients in reactions show reduction in FOXP3+ Treg cells as well as reduction in TGF-β and increase in IL-6. Moreover, expression of many T cell markers, cytokines, chemokines and signaling factors were observed to be increased in RR as compared to ENL reaction patients.

Conclusions

Patients with leprosy reactions show an imbalance in Th17 and Treg populations. The reduction in Treg suppressor activity is associated withhigherTh17cell activity. The combined effect of reduced TGF-β and enhanced IL-6, IL-21 cytokines influence the balance between Th17 or Treg cells in leprosy reactions as reported in the murine models and autoimmune diseases. The increase in Th17 cell associated cytokines may contribute to lesional inflammation.  相似文献   
2.
Toll-like receptors (TLRs) are important regulators of the innate immune response to pathogens, including Mycobacterium leprae, which is recognized by TLR1/2 heterodimers. We previously identified a transmembrane domain polymorphism, TLR1_T1805G, that encodes an isoleucine to serine substitution and is associated with impaired signaling. We hypothesized that this TLR1 SNP regulates the innate immune response and susceptibility to leprosy. In HEK293 cells transfected with the 1805T or 1805G variant and stimulated with extracts of M. leprae, NF-kappaB activity was impaired in cells with the 1805G polymorphism. We next stimulated PBMCs from individuals with different genotypes for this SNP and found that 1805GG individuals had significantly reduced cytokine responses to both whole irradiated M. leprae and cell wall extracts. To investigate whether TLR1 variation is associated with clinical presentations of leprosy or leprosy immune reactions, we examined 933 Nepalese leprosy patients, including 238 with reversal reaction (RR), an immune reaction characterized by a Th1 T cell cytokine response. We found that the 1805G allele was associated with protection from RR with an odds ratio (OR) of 0.51 (95% CI 0.29-0.87, p = 0.01). Individuals with 1805 genotypes GG or TG also had a reduced risk of RR in comparison to genotype TT with an OR of 0.55 (95% CI 0.31-0.97, p = 0.04). To our knowledge, this is the first association of TLR1 with a Th1-mediated immune response. Our findings suggest that TLR1 deficiency influences adaptive immunity during leprosy infection to affect clinical manifestations such as nerve damage and disability.  相似文献   
3.
The present study was designed to examine the functional relevance of two heterozygous mutations (H391Y and K422R), observed earlier by us in the Bloom syndrome condition. Cells stably expressing exogenous wild-type or mutant PKM2 (K422R or H391Y) or co-expressing both wild type and mutant (PKM2-K422R or PKM2-H391Y) were assessed for cancer metabolism and tumorigenic potential. Interestingly, cells co-expressing PKM2 and mutant (K422R or H391Y) showed significantly aggressive cancer metabolism as compared with cells expressing either wild-type or mutant PKM2 independently. A similar trend was observed for oxidative endurance, tumorigenic potential, cellular proliferation, and tumor growth. These observations signify the dominant negative nature of mutations. Remarkably, PKM2-H391Y co-expressed cells showed a maximal effect on all the studied parameters. Such a dominant negative impaired function of PKM2 in tumor development is not known; this study demonstrates for the first time the possible predisposition of Bloom syndrome patients with impaired PKM2 activity to cancer and the importance of studying genetic variations in PKM2 in the future to understand their relevance in cancer in general.  相似文献   
4.
Abstract— The relationship between sodium ion (Na+) influx and vol. flow of fluid into the cerebral ventricles was measured during ventriculocisternal perfusion with sucrose solutions of various concentrations. The vol. flow of fluid into the ventricles of cats varied linearly from 0 to 90 μl/min with sucrose solutions of 6 to 780 mOsm/l. In the vol. flow range of 0 to 35 μl/min, Na+ influx was essentially constant independent of vol. flow rate with a mean value of 6.95 μEq/min. In the vol. flow range of 25 to 90 μl/min, Na+ influx increased linearly with flow rate. Under all conditions, Na+ influx was greater than that corresponding to newly formed fluid with a normal spinal fluid Na+ concentration. The virtual Na+ concentration of nascent fluid was effectively infinite when vol. flow was zero and had an asymptotic minimum value of 109 mEq/l as vol. flow increased above normal. These results demonstrate that Na+ influx into the ventricles may occur by diffusion from the surrounding brain and also with vol. flow of nascent fluid.  相似文献   
5.
Synthesis and antimalarial activities of N8-(4-amino-1-methylbutyl)-5-alkoxy-4-ethyl-6-methoxy-8-quinolinamines (5) and their pro prodrug analogues (6-7) prepared by covalently linking 5 to the redox-sensitive (8) and esterase-sensitive (9) linkers through the amide linkage are reported. The most effective 8-quinolinamines [5c (R=C5H11) and 5f (R=C8H17)] have exhibited in vitro and in vivo biological efficacy superior to that of the standard drug chloroquine against both drug-sensitive and drug-resistant malaria strains. Analogues 6-7 were evaluated for in vivo blood-schizontocidal activity as potential pro prodrug models for the primary amino group containing 8-quinolinamines (5). The most effective pro prodrug analogue (6c) has displayed promising activities against drug-sensitive and drug-resistant strains of Plasmodia in vivo.  相似文献   
6.
Metabolic changes that contribute to differentiation are not well understood. Overwhelming evidence shows the critical role of glycolytic enzyme pyruvate kinase (PK) in directing metabolism of proliferating cells. However, its role in metabolism of differentiating cells is unclear. Here we studied the role of PK in phorbol 12-myristate 13-acetate (PMA)-induced megakaryocytic differentiation in human leukemia K562 cells. We observed that PMA treatment decreased cancer-type anabolic metabolism but increased ATP production, along with up-regulated expression of two PK isoforms (PKM2 and PKR) in an ERK2-dependent manner. Interestingly, silencing of PK (PKM2 and PKR) inhibited PMA-induced megakaryocytic differentiation, as revealed by decreased expression of megakaryocytic differentiation marker CD61 and cell cycle behavior. Further, PMA-induced ATP production reduced greatly upon PK silencing, suggesting that PK is required for ATP synthesis. In addition to metabolic effects, PMA treatment also translocated PKM2, but not PKR, into nucleus. ERK1/2 knockdowns independently and together suggested the role of ERK2 in the up-regulation of both the isoforms of PK, proposing a role of ERK2-PK isoform axis in differentiation. Collectively, our findings unravel ERK2 guided PK-dependent metabolic changes during PMA induction, which are important in megakaryocytic differentiation.  相似文献   
7.
The unifying structural characteristic of members of the bacterial order Thermotogales is their toga, an unusual cell envelope that includes a loose-fitting sheath around each cell. Only two toga-associated structural proteins have been purified and characterized in Thermotoga maritima: the anchor protein OmpA1 (or Ompα) and the porin OmpB (or Ompβ). The gene encoding OmpA1 (ompA1) was cloned and sequenced and later assigned to TM0477 in the genome sequence, but because no peptide sequence was available for OmpB, its gene (ompB) was not annotated. We identified six porin candidates in the genome sequence of T. maritima. Of these candidates, only one, encoded by TM0476, has all the characteristics reported for OmpB and characteristics expected of a porin including predominant β-sheet structure, a carboxy terminus porin anchoring motif, and a porin-specific amino acid composition. We highly enriched a toga fraction of cells for OmpB by sucrose gradient centrifugation and hydroxyapatite chromatography and analyzed it by LC/MS/MS. We found that the only porin candidate that it contained was the TM0476 product. This cell fraction also had β-sheet character as determined by circular dichroism, consistent with its enrichment for OmpB. We conclude that TM0476 encodes OmpB. A phylogenetic analysis of OmpB found orthologs encoded in syntenic locations in the genomes of all but two Thermotogales species. Those without orthologs have putative isofunctional genes in their place. Phylogenetic analyses of OmpA1 revealed that each species of the Thermotogales has one or two OmpA homologs. T. maritima has two OmpA homologs, encoded by ompA1 (TM0477) and ompA2 (TM1729), both of which were found in the toga protein-enriched cell extracts. These annotations of the genes encoding toga structural proteins will guide future examinations of the structure and function of this unusual lineage-defining cell sheath.  相似文献   
8.
9.
Kumar N  Kaul CL  Ishrath A  Dey CS 《Life sciences》2004,74(15):1877-1888
We examined the effect of combination of thiazolidinediones (TZDs) and metformin on insulin-resistant skeletal muscle cells. The combined use of TZDs and metformin resulted in maximum tyrosine phosphorylation of insulin receptor (IR) and insulin receptor substrate-1 (IRS-1) at 12.5 microM of TZDs and 100 microM of metformin as compared to the maximum tyrosine phosphorylation of IR and IRS-1 achieved at 50 microM of TZDs or 400 microM of metformin. The glucose uptake was significantly high at the combination of lower concentration (12.5 microM of TZDs and 100 microM of metformin) as compared to the combination of higher concentration (50 microM of TZDs and 400 microM of metformin). Results demonstrated that (1) Additive effect on insulin sensitization can be achieved by a combination of TZDs and metformin at lower concentration; (2) combination of TZDs and metformin act on insulin signaling molecules in insulin resistance; (3) in vitro system has the potentiality to determine possible target molecule(s) and mechanism of action of drugs.  相似文献   
10.

Background

Lepromatous leprosy caused by Mycobacterium leprae is associated with antigen specific T cell unresponsiveness/anergy whose underlying mechanisms are not fully defined. We investigated the role of CD25+FOXP3+ regulatory T cells in both skin lesions and M.leprae stimulated PBMC cultures of 28 each of freshly diagnosed patients with borderline tuberculoid (BT) and lepromatous leprosy (LL) as well as 7 healthy household contacts of leprosy patients and 4 normal skin samples.

Methodology/Principle Findings

Quantitative reverse transcribed PCR (qPCR), immuno-histochemistry/flowcytometry and ELISA were used respectively for gene expression, phenotype characterization and cytokine levels in PBMC culture supernatants. Both skin lesions as well as in vitro antigen stimulated PBMC showed increased percentage/mean fluorescence intensity of cells and higher gene expression for FOXP3+, TGF-β in lepromatous (p<0.01) as compared to tuberculoid leprosy patients. CD4+CD25+FOXP3+ T cells (Tregs) were increased in unstimulated basal cultures (p<0.0003) and showed further increase in in vitro antigen but not mitogen (phytohemaglutinin) stimulated PBMC (iTreg) in lepromatous as compared to tuberculoid leprosy patients (p<0.002). iTregs of lepromatous patients showed intracellular TGF-β which was further confirmed by increase in TGF-β in culture supernatants (p<0.003). Furthermore, TGF-β in iTreg cells was associated with phosphorylation of STAT5A. TGF-β was seen in CD25+ cells of the CD4+ but not that of CD8+ T cell lineage in leprosy patients. iTregs did not show intracellular IFN-γ or IL-17 in lepromatous leprosy patients.

Conclusions/Significance

Our results indicate that FOXP3+ iTregs with TGF-β may down regulate T cell responses leading to the antigen specific anergy associated with lepromatous leprosy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号