首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  2022年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.

Continuous monitoring of air quality and rapid detection of pollutants are highly desirable in urban planning and development of smart cities. One of the primary greenhouse gases responsible for environmental degradation and respiratory diseases is nitrogen dioxide (NO2). Existing gas sensors for measuring NO2 concentration suffer from drawbacks such as cross-sensitivity, limited range, and short life span. On the other hand, optical sensors, in particular, surface plasmon resonance (SPR) sensors, have emerged as a preferred alternative owing to advantages like high selectivity, immunity to electromagnetic interference, and low response time. In this work, we design and simulate a NO2 sensor based on a glass waveguide coated with a gold film. Surface plasmons are excited at the interface by a 400–500-nm light source, incident at an angle of 43.16°. To enhance the sensitivity, we further coat the waveguide with three layers of carbon-silver (C–Ag) nanodots, which increases the surface plasmon field amplitude by nearly 7 times, in the absence of NO2. When NO2 concentration is varied in the range of 0–200 ppm, a corresponding change is observed in the reflected amplitude. In the absence of the C–Ag nanodots layer, the sensitivity is only 0.00042%/ppm, and on addition of C–Ag nanodots, the sensitivity increases significantly to 0.14235%/ppm which is nearly 343 times higher. These results demonstrate the efficiency of implementing nanodots in SPR sensor to detect and trace concentrations of contaminants in the gas phase.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号