首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   184篇
  免费   10篇
  194篇
  2022年   4篇
  2021年   12篇
  2020年   1篇
  2019年   2篇
  2018年   10篇
  2017年   9篇
  2016年   9篇
  2015年   11篇
  2014年   12篇
  2013年   23篇
  2012年   29篇
  2011年   11篇
  2010年   13篇
  2009年   11篇
  2008年   7篇
  2007年   4篇
  2006年   6篇
  2005年   2篇
  2004年   6篇
  2003年   2篇
  2002年   5篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1993年   2篇
排序方式: 共有194条查询结果,搜索用时 0 毫秒
1.
Environmental stresses trigger a wide variety of plant responses, ranging from altered gene expression and cellular metabolism to changes in growth rates and crop yields. A plethora of plant reactions exist to circumvent the potentially harmful effects caused by a wide range of both abiotic and biotic stresses, including light, drought, salinity, high temperatures, and pathogen infections. Among the environmental stresses, drought stress is one of the most adverse factors of plant growth and productivity. Understanding the biochemical and molecular responses to drought is essential for a holistic perception of plant resistance mechanisms to water-limited conditions. Drought stress progressively decreases CO2 assimilation rates due to reduced stomatal conductance. Drought stress also induces reduction in the contents and activities of photosynthetic carbon reduction cycle enzymes, including the key enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase. The critical roles of proline and glycine-betaine, as well as the role of abscisic acid (ABA), under drought stress conditions have been actively researched to understand the tolerance of plants to dehydration. In addition, drought stress-induced generation of active oxygen species is well recognized at the cellular level and is tightly controlled at both the production and consumption levels in vivo, through increased antioxidative systems. Knowledge of sensing and signaling pathways, including ABA-mediated changes in response to drought stress, is essential to improve crop management. This review focuses on the ability and strategies of higher plants to respond and adapt to drought stress.  相似文献   
2.
Chemical proteomics is an emerging technique for drug target deconvolution and profiling the toxicity of known drugs. With the use of this technique, the specificity of a small molecule inhibitor toward its potential targets can be characterized and information thus obtained can be used in optimizing lead compounds. Most commonly, small molecules are immobilized on solid supports and used as affinity chromatography resins to bind targets. However, it is difficult to evaluate the effect of immobilization on the affinity of the compounds to their targets. Here, we describe the development and application of a soluble probe where a small molecule was coupled with a peptide epitope which was used to affinity isolate binding proteins from cell lysate. The soluble probe allowed direct verification that the compound after coupling with peptide epitope retained its binding characteristics. The PKC-alpha inhibitor Bisindolylmaleimide-III was coupled with a peptide containing the FLAG epitope. Following incubation with cellular lysates, the compound and associated proteins were affinity isolated using anti-FLAG antibody beads. Using this approach, we identified the known Bisindolylmaleimide-III targets, PKC-alpha, GSK3-beta, CaMKII, adenosine kinase, CDK2, and quinine reductase type 2, as well as previously unidentified targets PKAC-alpha, prohibitin, VDAC and heme binding proteins. This method was directly compared to the solid-phase method (small molecule was immobilized to a solid support) providing an orthogonal strategy to aid in target deconvolution and help to eliminate false positives originating from nonspecific binding of the proteins to the matrix.  相似文献   
3.
Cellular functions such as cell division are remarkably conserved across phyla. However, the evolutionary principles of cellular organization that drive them are less well explored. Thus, an essential question remains: to what extent do cellular parameters evolve without altering the basic functions they sustain? Here we have observed six different nematode species for which the mitotic spindle is positioned asymmetrically during the first embryonic division. Whereas the C. elegans spindle undergoes oscillations during its displacement, the spindle elongates without oscillations in other species. We asked which evolutionary changes in biophysical parameters could explain differences in spindle motion while maintaining a constant output. Using laser microsurgery of the spindle, we revealed that all species are subjected to cortical pulling forces of varying magnitudes. Using a viscoelastic model to fit the recoil trajectories and with an independent measurement of cytoplasmic viscosity, we extracted the values of cytoplasmic drag, cortical pulling forces, and spindle elasticity for all species. We found large variations in cytoplasmic viscosity, whereas cortical pulling forces and elasticity were often more constrained. In agreement with previous simulations, we found that increased viscosity correlates with decreased oscillation speeds across species. However, the absence of oscillations in some species despite low viscosity can only be explained by smaller pulling forces. Consequently, we find that spindle mobility across the species analyzed here is characterized by a tradeoff between cytoplasmic viscosity and pulling forces normalized by the size of the embryo. Our work provides a framework for understanding mechanical constraints on evolutionary diversification of spindle mobility.  相似文献   
4.
5.
Archives of Microbiology - Cellulose is the most abundant natural polymer present on Earth in the form of agriculture waste. Hydrolysis of agriculture waste for simple fermentable reducing sugars...  相似文献   
6.
Compared to their eukaryotic counterparts, bacterial genomes are small and contain extremely tightly packed genes. Repetitive sequences are rare but not completely absent. One of the most common repeat families is REPINs. REPINs can replicate in the host genome and form populations that persist for millions of years. Here, we model the interactions of these intragenomic sequence populations with the bacterial host. We first confirm well-established results, in the presence and absence of horizontal gene transfer (hgt) sequence populations either expand until they drive the host to extinction or the sequence population gets purged from the genome. We then show that a sequence population can be stably maintained, when each individual sequence provides a benefit that decreases with increasing sequence population size. Maintaining a sequence population of stable size also requires the replication of the sequence population to be costly to the host, otherwise the sequence population size will increase indefinitely. Surprisingly, in regimes with high hgt rates, the benefit conferred by the sequence population does not have to exceed the damage it causes to its host. Our analyses provide a plausible scenario for the persistence of sequence populations in bacterial genomes. We also hypothesize a limited biologically relevant parameter range for the provided benefit, which can be tested in future experiments.  相似文献   
7.
Rumen microorganisms play an important role in ruminant digestion and absorption of nutrients and have great potential applications in the field of rumen adjusting, food fermentation and biomass utilization etc. In order to investigate the composition of microorganisms in the rumen of camel (Camelus dromedarius), this study delves in the microbial diversity by culture-independent approach. It includes comparison of rumen samples investigated in the present study to other currently available metagenomes to reveal potential differences in rumen microbial systems. Pyrosequencing based metagenomics was applied to analyze phylogenetic and metabolic profiles by MG-RAST, a web based tool. Pyrosequencing of camel rumen sample yielded 8,979,755 nucleotides assembled to 41,905 sequence reads with an average read length of 214 nucleotides. Taxonomic analysis of metagenomic reads indicated Bacteroidetes (55.5 %), Firmicutes (22.7 %) and Proteobacteria (9.2 %) phyla as predominant camel rumen taxa. At a finer phylogenetic resolution, Bacteroides species dominated the camel rumen metagenome. Functional analysis revealed that clustering-based subsystem and carbohydrate metabolism were the most abundant SEED subsystem representing 17 and 13 % of camel metagenome, respectively. A high taxonomic and functional similarity of camel rumen was found with the cow metagenome which is not surprising given the fact that both are mammalian herbivores with similar digestive tract structures and functions. Combined pyrosequencing approach and subsystems-based annotations available in the SEED database allowed us access to understand the metabolic potential of these microbiomes. Altogether, these data suggest that agricultural and animal husbandry practices can impose significant selective pressures on the rumen microbiota regardless of rumen type. The present study provides a baseline for understanding the complexity of camel rumen microbial ecology while also highlighting striking similarities and differences when compared to other animal gastrointestinal environments.  相似文献   
8.
Lactation is a highly demanding event in mammals, including buffaloes. It modulates the partitioning of nutrients, energy utilization, and food intake of the mother to meet her own and infant's energy needs. Failure to satisfy these energy needs leads to Negative Energy Balance (NEB). Currently, the only available indirect NEB indicator is Body Condition Score (BCS). However, direct dependency of the BCS on the peak depletion of body fat causes its inefficient use in a dairy farm. Thus, to establish objective NEB indicators in buffaloes, the serum levels of biochemical (serum β-hydroxybutyrate [BHBA] and free fatty acids [FFAs]), and endocrine (Growth Hormone [GH], insulin-like growth factor1 [IGF1], Insulin, and leptin) parameters were estimated in buffaloes. Our results revealed that serum FFA levels were significantly (p < 0.05) higher in high milk yielders (HMY) than low milk yielders (LMY) and heifers (H) during the 3rd and the 4th weeks of postpartum. The serum FFA levels were also significantly (p < 0.001) higher in the postpartum buffaloes with BCS < 3 in the field conditions. Further, serum leptin levels were significantly (p < 0.05) lower in HMY than LMY during the 3rd week of postpartum. However, the BHBA, GH, IGF1, and insulin levels were not significantly different between lactating buffaloes and H. These observations indicated that the NEB condition is probably restricted to the first month of early lactation in buffaloes. In conclusion, the simultaneous higher FFA and lower leptin levels could act as direct plausible metabolic indicators of NEB in buffaloes.  相似文献   
9.

Background

Single-center studies suggest an increasing incidence of acute pancreatitis (AP) in children. Our specific aims were to (i) estimate the recent secular trends, (ii) assess the disease burden, and (iii) define the demographics and comorbid conditions of AP in hospitalized children within the United States.

Methods

We used the Healthcare Cost and Utilization Project Kids’ Inpatient Database, Agency for Healthcare Research and Quality for the years 2000 to 2009. Extracted data were weighted to generate national-level estimates. We used the Cochrane-Armitage test to analyze trends; cohort-matching to evaluate the association of AP and in-hospital mortality, length of stay, and charges; and multivariable logistic regression to test the association of AP and demographics and comorbid conditions.

Results

We identified 55,012 cases of AP in hospitalized children (1–20 years of age). The incidence of AP increased from 23.1 to 34.9 (cases per 10,000 hospitalizations per year; P<0.001) and for all-diagnoses 38.7 to 61.1 (P<0.001). There was an increasing trend in the incidence of both primary and all-diagnoses of AP (P<0.001). In-hospital mortality decreased (13.1 to 7.6 per 1,000 cases, P<0.001), median length of stay decreased (5 to 4 days, P<0.001), and median charges increased ($14,956 to $22,663, P<0.001). Children with AP compared to those without the disease had lower in-hospital mortality (adjusted odds ratio, aOR 0.86, 95% CI, 0.78–0.95), longer lengths of stay (aOR 2.42, 95% CI, 2.40–2.46), and higher charges (aOR 1.62, 95% CI, 1.59–1.65). AP was more likely to occur in children older than 5 years of age (aORs 2.81 to 5.25 for each 5-year age interval). Hepatobiliary disease was the comorbid condition with the greatest association with AP.

Conclusions

These results demonstrate a rising incidence of AP in hospitalized children. Despite improvements in mortality and length of stay, hospitalized children with AP have significant morbidity.  相似文献   
10.
Myostatin (MSTN), a member of transforming growth factor-β (TGF-β) superfamily, is a negative regulator of the skeletal muscle growth, and suppresses the proliferation and differentiation of myoblast cells. Dysfunction of MSTN gene either by natural mutation or genetic manipulation (knockout or knockdown) has been reported to interrupt its proper function and to increase the muscle mass in many mammalian species. RNA interference (RNAi) mediated by small interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs) has become a powerful tool for gene knockdown studies. In the present study transient silencing of MSTN gene in chicken embryo fibroblast cells was evaluated using five different shRNA expression constructs. We report here up to 68% silencing of myostatin mRNA using these shRNA constructs in transiently transfected fibroblasts (p<0.05). This was, however, associated with induction of interferon responsive genes (OAS1, IFN-β) (3.7-64 folds; p<0.05). Further work on stable expression of antimyostatin shRNA with minimum interferon induction will be of immense value to increase the muscle mass in the transgenic animals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号