首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233篇
  免费   19篇
  2023年   1篇
  2022年   4篇
  2021年   3篇
  2020年   4篇
  2019年   3篇
  2018年   11篇
  2017年   4篇
  2016年   9篇
  2015年   10篇
  2014年   12篇
  2013年   15篇
  2012年   18篇
  2011年   22篇
  2010年   7篇
  2009年   9篇
  2008年   8篇
  2007年   20篇
  2006年   16篇
  2005年   14篇
  2004年   15篇
  2003年   9篇
  2002年   8篇
  2001年   4篇
  2000年   3篇
  1999年   5篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1985年   1篇
排序方式: 共有252条查询结果,搜索用时 15 毫秒
1.
2.
Abstract

Many studies describe the advantages of using hydrophobic particles on lipase immobilisation. However, many of these works neglect the effect of other variables of the supports, such as specific area and porosity, on the biocatalyst performance, and do not evaluate the influence of the hydrophobicity level of the particles on the biocatalysts’ activity as a single variable. Thus, the focus of the present work was to evaluate the effect of the hydrophobicity degree of polymeric particles on the biocatalysts’ activities, mitigating the influence of other variables. The study was divided into two steps. Firstly, distinct particles, exhibiting different composition and hydrophobicity levels, were used for the immobilization of a commercial lipase B from Candida antarctica (CAL-B). Then, distinct core-shell polymeric particles presenting different functional compounds on the surface were produced, using as comonomers styrene, divinylbenzene, 1-octene, vinylbenzoate and cardanol. Such particles were subsequently used for CAL-B immobilisation and the performance of the biocatalysts was evaluated on hydrolysis (using p-nitrophenyl laurate, as substrate) and esterification (using ethanol and oleic acid, as substrate) reactions. Based on the screening step, it was observed that for non-porous particles the correlation coefficients between the hydrophobicity level of the supports and the biocatalysts performance, for both hydrolysis and esterification reactions, were very low (0.32 and 0.45, respectively). It highlights that there was no significant correlation between these variables and that, probably, the chemical composition of the polymeric chains affects more significantly the biocatalyst performance. Then, analysing the subsequent stage, it was observed that small changes in the surface composition of the core-shell particles result in significant changes on the textural properties of the supports (specific area ranging from 1.2?m2.g?1 to 18.3?m2.g?1; and contact angles ranging from 71° (hydrophilic particles) to 92° (hydrophobic supports) when polymer films were put in contact with water). Such particles were also employed on CAL-B immobilization and it was noticed that higher correlation coefficients were achieved for hydrolysis (ρ?=?0.53) and esterification (ρ?=?0.74) reactions. Therefore, it is shown that the hydrophobicity degree of such supports starts to affect more effectively the biocatalysts performance when other textural features of the supports become more significant, such as specific area and porosity.  相似文献   
3.
4.
5.
The heteropentameric condensin complexes have been shown to participate in mitotic chromosome condensation and to be required for unperturbed chromatid segregation in nuclear divisions. Vertebrates have two condensin complexes, condensin I and condensin II, which contain the same structural maintenance of chromosomes (SMC) subunits SMC2 and SMC4, but differ in their composition of non–SMC subunits. While a clear biochemical and functional distinction between condensin I and condensin II has been established in vertebrates, the situation in Drosophila melanogaster is less defined. Since Drosophila lacks a clear homolog for the condensin II–specific subunit Cap-G2, the condensin I subunit Cap-G has been hypothesized to be part of both complexes. In vivo microscopy revealed that a functional Cap-G-EGFP variant shows a distinct nuclear enrichment during interphase, which is reminiscent of condensin II localization in vertebrates and contrasts with the cytoplasmic enrichment observed for the other EGFP-fused condensin I subunits. However, we show that this nuclear localization is dispensable for Cap-G chromatin association, for its assembly into the condensin I complex and, importantly, for development into a viable and fertile adult animal. Immunoprecipitation analyses and complex formation studies provide evidence that Cap-G does not associate with condensin II–specific subunits, while it can be readily detected in complexes with condensin I–specific proteins in vitro and in vivo. Mass-spectrometric analyses of proteins associated with the condensin II–specific subunit Cap-H2 not only fail to identify Cap-G but also the other known condensin II–specific homolog Cap-D3. As condensin II–specific subunits are also not found associated with SMC2, our results question the existence of a soluble condensin II complex in Drosophila.  相似文献   
6.
7.
Movement of livestock production within a country or region has implications for genetics, adaptation, well-being, nutrition, and production logistics, particularly in continental-sized countries, such as Brazil. Cattle production in Brazil from 1977 to 2011 was spatialized, and the annual midpoint of production was calculated. Changes in the relative production and acceleration of production were calculated and spatialized using ARCGIS®. Cluster and canonical discriminant analyses were performed to further highlight differences between regions in terms of cattle production. The mean production point has moved from the Center of Minas Gerais State (in the southeast region) to the North of Goiás State (in the Midwest region). This reflects changes in environmental factors, such as pasture type, temperature and humidity. Acceleration in production in the northern region of Brazil has remained strong over the years. More recently, “traditional” cattle-rearing regions, such as the south and southeast, showed a reduction in growth rates as well as a reduction in herd size or internal migration over the period studied. These maps showed that this movement tends to be gradual, with few regions showing high acceleration or deceleration rates.  相似文献   
8.
9.
KNL1 is a large intrinsically disordered kinetochore (KT) protein that recruits spindle assembly checkpoint (SAC) components to mediate SAC signaling. The N-terminal region (NTR) of KNL1 possesses two activities that have been implicated in SAC silencing: microtubule (MT) binding and protein phosphatase 1 (PP1) recruitment. The NTR of Drosophila melanogaster KNL1 (Spc105) has never been shown to bind MTs or to recruit PP1. Furthermore, the phosphoregulatory mechanisms known to control SAC protein binding to KNL1 orthologues is absent in D. melanogaster. Here, these apparent discrepancies are resolved using in vitro and cell-based assays. A phosphoregulatory circuit that utilizes Aurora B kinase promotes SAC protein binding to the central disordered region of Spc105 while the NTR binds directly to MTs in vitro and recruits PP1-87B to KTs in vivo. Live-cell assays employing an optogenetic oligomerization tag and deletion/chimera mutants are used to define the interplay of MT and PP1 binding by Spc105 and the relative contributions of both activities to the kinetics of SAC satisfaction.  相似文献   
10.
Recent studies have revealed the structural and functional interactions between mitochondria, myofibrils and sarcoplasmic reticulum in cardiac cells. Direct channeling of adenosine phosphates between organelles identified in the experiments indicates that diffusion of adenosine phosphates is limited in cardiac cells due to very specific intracellular structural organization. However, the mode of diffusion restrictions and nature of the intracellular structures in creating the diffusion barriers is still unclear, and, therefore, a subject of active research. The aim of this work is to analyze the possible role of two principally different modes of restriction distribution for adenosine phosphates (a) the uniform diffusion restriction and (b) the localized diffusion limitation in the vicinity of mitochondria, by fitting the experimental data with the mathematical model. The reaction-diffusion model of compartmentalized energy transfer was used to analyze the data obtained from the experiments with the skinned muscle fibers, which described the following processes: mitochondrial respiration rate dependency on exogenous ADP and ATP concentrations; inhibition of endogenous ADP-stimulated respiration by pyruvate kinase (PK) and phosphoenolpyruvate (PEP) system; kinetics of oxygen consumption stabilization after addition of 2 mM MgATP or MgADP; ATPase activity with inhibited mitochondrial respiration; and buildup of MgADP concentration in the medium after addition of MgATP. The analysis revealed that only the second mechanism considered--localization of diffusion restrictions--is able to account for the experimental data. In the case of uniform diffusion restrictions, the model solution was in agreement only with two measurements: the respiration rate as a function of ADP or ATP concentrations and inhibition of respiration by PK + PEP. It was concluded that intracellular diffusion restrictions for adenosine phosphates are not distributed uniformly, but rather are localized in certain compartments of the cardiac cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号