首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
  2011年   1篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1987年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
The gene defective in cystic fibrosis has recently been shown to code for a membrane protein designated the "cystic fibrosis transmembrane conductance regulator" (CFTR) protein. While it has been shown that detectable levels of the mRNA for the normal CFTR protein are present in epithelial cells from different tissues, factors which regulate CFTR expression have not been identified. A clonal cell line originating from a human colon adenocarcinoma (HT29-18) differentiates to multiple epithelial cell types when deprived of glucose in the culture medium. In these studies, mRNA isolated from these cells was examined by hybridization to a 1.45-kilobase cDNA probe which encodes transmembrane portions of the CFTR protein between exons 13 and 19. Cellular differentiation of HT29-18 causes a 9-18-fold increase in CFTR mRNA abundance versus the mRNA for the structural proteins actin and tubulin. Cellular differentiation also causes a 5-fold increase in second messenger-regulated Cl- transport which is sensitive to a Cl- channel blocker (diphenylamine 2-carboxylate). Subclones of HT29-18 which are committed to differentiate to either a mucin-secreting (HT29-18-N2) or an "enterocyte-like" (HT29-18-C1) phenotype have also been examined. In both subclones, elevated levels of CFTR mRNA are observed when compared with undifferentiated HT29-18 cells. However, during cellular differentiation, the regulation of CFTR mRNA abundance and membrane enzyme expression by the subclones is different from HT29-18. The results show that elevated CFTR mRNA occurs in multiple differentiated intestinal epithelial cell types, despite a phenotype-specific regulation of membrane protein expression. This suggests that CFTR expression plays a role in the differentiated functions of multiple epithelial phenotypes and that both cellular differentiation and cellular phenotypes are factors which regulate CFTR expression.  相似文献   
2.
Ca2(+)-activated K+ channels are present in muscle, nerve, pancreas, macrophages, and renal cells. They are important in such diverse functions as neurotransmitter release, muscle excitability, pancreatic secretion, and cell volume regulation. Although much is known about the biophysics of Ca2(+)-activated K+ channels, the molecular structure, cDNA and amino acid sequences are unknown. We injected size-fractionated mRNA isolated from cultured rabbit kidney medullary thick ascending limb cells in Xenopus oocytes and observed newly expressed K+ currents using two-microelectrode voltage-clamp technique. The expressed K+ currents are Ca2+ dependent and inhibited by charybdotoxin, a specific blocker of Ca2(+)-activated K+ channels. Amplitudes of the current ranged from 30 nA to more than 1 microA at a membrane potential of +30 mV. Reversal potential of the current suggested a K(+)-selective channel. The peak activity of Ca2(+)-activated K+ channels were observed in fractions corresponding to a message RNA with size of approximately 4.5 kilobases.  相似文献   
3.
Herein we describe a series of potent and selective PPARgamma agonists with moderate PPARalpha affinity and little to no affinity for other nuclear receptors. In vivo studies in a NIDDM animal model (ZDF rat) showed that these compounds are efficacious at low doses in glucose normalization and plasma triglyceride reduction. Compound 1b (LY519818) was selected from our SAR studies to be advanced to clinical evaluation for the treatment of type II diabetes.  相似文献   
4.
In this study, AR42J pancreatic acinar cells were used to investigate if glucagon-like peptide-1 (GLP-1) or glucagon might influence amylase release and acinar cell function. We first confirmed the presence of GLP-1 receptors on AR42J cells by reverse trasncriptase-polymerase chain reaction (RT-PCR), Western blotting, and partial sequencing analysis. While cholecystokinin (CCK) increased amylase release from AR42J cells, GLP-1, alone or in the presence of CCK, had no effect on amylase release but both CCK and GLP-1 increased intracellular calcium. Similar to GLP-1, glucagon increased both cyclic adenosine monophosphate (cAMP) and intracellular calcium in AR42J cells but it actually decreased CCK-mediated amylase release (n = 20, P < 0.01). CCK stimulation resulted in an increase in tyrosine phosphorylation of several cellular proteins, unlike GLP-1 treatment, where no such increased phosphorylation was seen. Instead, GLP-1 decreased such protein phosphorylations. Genestein blocked CCK-induced phosphorylation events and amylase secretion while vanadate increased amylase secretion. These results provide evidence that tyrosine phosphorylation is necessary for amylase release and that signaling through GLP-1 receptors does not mediate amylase release in AR42J cells. J. Cell. Physiol. 181:470-478, 1999. Published 1999 Wiley-Liss, Inc.  相似文献   
5.
6.
7.
Brush-border membrane vesicles prepared from rabbit kidney outer cortex (rich in S1 and S2) and outer medulla (rich in S3) were used to evaluate the axial heterogeneity of tetraethylammonium transport in the proximal tubule. The vesicle preparations had similar Km values but the Vmax values differed, suggesting that axial heterogeneity of tetraethylammonium secretion may be due to differences in transport across the brush-border membrane.  相似文献   
8.
LSN862 is a novel peroxisome proliferator-activated receptor (PPAR)alpha/gamma dual agonist with a unique in vitro profile that shows improvements on glucose and lipid levels in rodent models of type 2 diabetes and dyslipidemia. Data from in vitro binding, cotransfection, and cofactor recruitment assays characterize LSN862 as a high-affinity PPARgamma partial agonist with relatively less but significant PPARalpha agonist activity. Using these same assays, rosiglitazone was characterized as a high-affinity PPARgamma full agonist with no PPARalpha activity. When administered to Zucker diabetic fatty rats, LSN862 displayed significant glucose and triglyceride lowering and a significantly greater increase in adiponectin levels compared with rosiglitazone. Expression of genes involved in metabolic pathways in the liver and in two fat depots from compound-treated Zucker diabetic fatty rats was evaluated. Only LSN862 significantly elevated mRNA levels of pyruvate dehydrogenase kinase isozyme 4 and bifunctional enzyme in the liver and lipoprotein lipase in both fat depots. In contrast, both LSN862 and rosiglitazone decreased phosphoenol pyruvate carboxykinase in the liver and increased malic enzyme mRNA levels in the fat. In addition, LSN862 was examined in a second rodent model of type 2 diabetes, db/db mice. In this study, LSN862 demonstrated statistically better antidiabetic efficacy compared with rosiglitazone with an equivalent side effect profile. LSN862, rosiglitazone, and fenofibrate were each evaluated in the humanized apoA1 transgenic mouse. At the highest dose administered, LSN862 and fenofibrate reduced very low-density lipoprotein cholesterol, whereas, rosiglitazone increased very low-density lipoprotein cholesterol. LSN862, fenofibrate, and rosiglitazone produced maximal increases in high-density lipoprotein cholesterol of 65, 54, and 30%, respectively. These findings show that PPARgamma full agonist activity is not necessary to achieve potent and efficacious insulin-sensitizing benefits and demonstrate the therapeutic advantages of a PPARalpha/gamma dual agonist.  相似文献   
9.
The cytoplasmic domain of the insulin receptor (IR) beta-subunit contains cysteine (Cys) residues whose reactivity and function remain uncertain. In this study, we examined the ability of the bifunctional cross-linking reagent 1,6-bismaleimidohexane (BMH) to covalently link IR with interacting proteins that possess reactive thiols. Transfected Chinese hamster ovary cells expressing either the wild-type human IR, C-terminally truncated receptors, or mutant receptors with Cys --> Ala substitutions and mouse 3T3-L1 adipocytes were used to compare the BMH effect. The results showed the formation of a large complex between the wild-type human receptor beta-subunit and molecule X, a thiol-reactive membrane-associated protein, in both intact and semipermeabilized cells in response to BMH. Prior cell stimulation with insulin had only a modest effect in this process. Western blot analysis revealed that the receptor alpha-subunit was not present in the beta-X complex. The BMH cross-linking did not inhibit in vitro tyrosine phosphorylation of the receptor complexed with molecule X. Both the human IR Cys981Ala mutant and murine IR, that lacks the equivalent of human Cys(981), failed to react with BMH. Finally, no covalent association between IR beta-subunit and IRS-1, the protein tyrosine phosphatase LAR or SHP-2 was observed in BMH-treated cells expressing the wild-type human IR. These results demonstrate a striking difference in reactivity among the cytoplasmic IR beta-subunit thiols and clearly show that Cys(981) of human IR beta-subunit is in close proximity to a thiol-reactive membrane-associated protein under basal and insulin-stimulated conditions.  相似文献   
10.
In the present study, we attempted to determine the importance of a 23-amino-acid sequence within the carboxyl terminus of the human insulin receptor (IR) molecule in modulating insulin action in Chinese hamster ovary cells. Stable expression of a minigene encoding the receptor fragment led to an increase in insulin-induced IR autophosphorylation that was 2.4-fold higher when compared to that of IR-expressing cells transfected with empty vector. Insulin-stimulated downstream signaling was also significantly elevated in cells expressing the minigene. It was found that expression of the minigene had no effect toward insulin-like growth factor I receptor kinase activity and function. These results indicate that the IR carboxyl terminus contains a motif that acts as a physiologic modulator of insulin signaling. J. Cell. Biochem. 78:160-169, 2000. Published 2000 Wiley-Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号