首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   10篇
  2021年   1篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   6篇
  2013年   4篇
  2012年   9篇
  2011年   2篇
  2010年   9篇
  2009年   6篇
  2008年   6篇
  2007年   11篇
  2006年   5篇
  2005年   3篇
  2004年   7篇
  2003年   7篇
  2002年   1篇
  2001年   3篇
  2000年   6篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1992年   2篇
  1991年   4篇
  1990年   2篇
  1982年   1篇
  1981年   1篇
排序方式: 共有114条查询结果,搜索用时 31 毫秒
1.
Some 3-amino 4,6-diarylpyridazine derivatives were tested for their effects on TXA2 and PGI2 biosyntheses in vitro and on the TXA2- and PGI2-synthesizing activities of cardiac tissue. Horse platelet and aorta microsomes were used as sources of thromboxane and prostacyclin synthetases respectively. The TXA2- and PGI2-synthesizing activities of cardiac tissue were studied on isolated perfused rabbit hearts (the heart microsomes being used both as TXA2 synthetase and PGI2 synthetase sources). TXB2 and 6-keto PGF1 alpha were determined by RIA. Among the compounds under study, 3-morpholino 4,6-diphenylpyridazine (III) was shown to inhibit specifically the TXA2 synthetase. Substitution of the morpholino group by a dimethylamino one (I) reinforced the inhibiting effects on TXA2 synthetase but it also revealed a slight anti-prostacyclin synthetase action of the molecule. Replacement of 3-morpholino moieties by either a 3-hydrazino (IV), or a 2-dimethylaminoethylamino (V), or a 2-morpholinoethylamino group (VI) abolished completely the effects of the molecule on TXA2 and PGI2 synthetases. Likewise the addition of chlorine on the para-position on the phenyl ring of I neutralized all its inhibitory effects both on TXA2 and PGI2 synthetases in vitro. None of the 3-amino 4,6-diarylpyridazine derivatives was active on either the TXA2- or PGI2-synthesizing activities of cardiac tissue.  相似文献   
2.
3.
Ecballium elaterium, a medicinal plant, whose fruit juice is used for the treatment of jaundice in folk medicine, has been reported as being capable of decreasing bilirubinemia in animals with jaundice [H.H. Elayan, M.N. Garaibeh, S.M. Zmeili, S.A. Salhab, Effects of Ecballium elaterium juice on serum bilirubin concentration in male rats, Int. J. Crude Drug Res. 27 (1989) 227-234]. The aim of this study is to identify the Ecballium elaterium components, which are able to modify the binding of bilirubin to albumin. The juice is fiber-free but contains proteins, lipids, sugars, and minerals. The extract of the juice, analyzed by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS), contains cucurbitacins (Cuc) B, D, E, and I as well as several glycosylated compounds. Human plasma containing no or serial concentrations of Ecballium elaterium components were prepared and the direct bilirubin (DB) and total bilirubin (TB) were determined by the Jendrassik and Grof method. Our results showed that Cuc D, E, and B decreased the levels of DB and TB in plasma, while Cuc I, glycosyl derivatives, and proteins of the juice did not modify the bilirubin levels. The binding of domain specific ligands to HSA, bilirubin (domain IIA), and ibuprofen (domain IIIA), were studied in the absence and presence of Cuc D, E, and I, by fluorescence spectroscopy. The values of binding constant K(a) and binding site number n, determined by Scatchard method, increased for the both ligands only in the presence of Cuc E and D. Cuc I decreased slightly the K(a) of ibuprofen, suggesting an interaction with the domain IIIA of the protein. As a conclusion, Cuc E, D, and B produce rearrangement in the structure of albumin leading to increase the binding of domain specific ligands, ibuprofen and bilirubin.  相似文献   
4.
The tetradomain voltage-gated sodium channels from rat skeletal muscle (rSkM1) and from human heart (hH1) possess different sensitivities to the 22-amino-acid peptide toxin, mu-conotoxin GIIIA (mu-CTX). rSkM1 is sensitive (IC50 = 51.4 nM) whereas hH1 is relatively resistant (IC50 = 5700 nM) to the action of the toxin, a difference in sensitivity of >100-fold. The affinity of the mu-CTX for a chimera formed from domain 1 (D1), D2, and D3 from rSkM1and D4 from hH1 (SSSH; S indicates origin of domain is skeletal muscle and H indicates origin of domain is heart) was paradoxically increased approximately fourfold relative to that of rSkM1. The source of D3 is unimportant regarding the difference in the relative affinity of rSkM1 and hH1 for mu-CTX. Binding of mu-CTX to HSSS was substantially decreased (IC50 = 1145 nM). Another chimera with a major portion of D2 deriving form hH1 showed no detectable binding of mu-CTX (IC50 > 10 microM). These data indicate that D1 and, especially, D2 play crucial roles in forming the mu-CTX receptor. Charge-neutralizing mutations in D1 and D2 (Asp384, Asp762, and Glu765) had no effect on toxin binding. However, mutations at a neutral and an anionic site (residues 728 and 730) in S5-S6/D2 of rSkM1, which are not in the putative pore region, were found to decrease significantly the mu-CTX affinity with little effect on tetrodotoxin binding (</=1.3-fold increase in affinity). Furthermore, substitution at Asp730 with cysteine and exposure to Cd2+ or methanethiosulfonate reagents had no significant effect on sodium currents, consistent with this residue not contributing to the pore.  相似文献   
5.
The α-subunit cDNAs encoding voltage-sensitive sodium channels of human heart (hH1) and rat skeletal muscle (rSkM1) have been expressed in the tsA201 mammalian cell line, in which inactivation properties appear to be normal in contrast to Xenopus oocytes. A series of rSkM1/hH1 chimeric sodium channels has been evaluated to identify the domains of the α-subunits that are responsible for a set of electrophysiological differences between hH1 and rSkM1, namely, midpoints and slope factors of steady-state activation and inactivation, inactivation kinetics and recovery from inactivation kinetics and their voltage-dependence. The phenotype of chimeric channels in which each hH1 domain was successively introduced into a rSkM1 α-subunit framework confirmed the following conclusions. (i) The D4 and or/C-ter. are responsible for the slow inactivation of hH1 sodium channels. (ii) Concerning the other differences between rSkM1 and hH1: steady-state activation and inactivation, kinetics of recovery from inactivation, the phenotypes are determined probably by more than one domain of the α-subunit. Received: 20 January 1998/Revised: 19 March 1998  相似文献   
6.
7.
The effects of dietary exposure to organic anions on the physiology of isolated Malpighian tubules and on tubule gene expression were examined using larvae of Drosophila melanogaster. Acute (24 h) or chronic (7 d) exposure to type I organic anions (fluorescein or salicylate) was associated with increased fluid secretion rates and increased fluxes of both salicylate and the type II organic anion methotrexate. By contrast, chronic exposure to dietary methotrexate was associated with increased fluid secretion rate and increased flux of methotrexate, but not salicylate. Exposure to methotrexate in the diet resulted in increases in the expression of a multidrug efflux transporter gene (MET; CG30344) in the Malpighian tubules. There were also increases in expression of genes for either a Drosophila multidrug resistance–associated protein (dMRP; CG6214) or an organic anion transporting polypeptide (OATP; CG3380), depending on the concentration of methotrexate in the diet. Exposure to salicylate in the diet was associated with an increase in expression of dMRP and with decreases of MET and OATP. Exposure to dietary salicylate or methotrexate was also associated with different patterns of expression of heat shock protein genes. The results suggest that exposure to specific type I or type II organic anions has multiple effects and results not only in increased organic anion transport but also in increased rates of inorganic ion transport, which drives osmotically‐obliged fluid secretion. Increased fluid secretion may enhance secretion of organic anions by eliminating diffusive backflux from the tubule lumen to the hemolymph. © 2010 Wiley Periodicals, Inc.  相似文献   
8.
We present a method for calculating the configurational-dependent diffusion coefficient of a globular protein as a function of the global folding process. Using a coarse-grained structure-based model, we determined the diffusion coefficient, in reaction coordinate space, as a function of the fraction of native contacts formed Q for the cold shock protein (TmCSP). We find nonmonotonic behavior for the diffusion coefficient, with high values for the folded and unfolded ensembles and a lower range of values in the transition state ensemble. We also characterized the folding landscape associated with an energetically frustrated variant of the model. We find that a low-level of frustration can actually stabilize the native ensemble and increase the associated diffusion coefficient. These findings can be understood from a mechanistic standpoint, in that the transition state ensemble has a more homogeneous structural content when frustration is present. Additionally, these findings are consistent with earlier calculations based on lattice models of protein folding and more recent single-molecule fluorescence measurements.  相似文献   
9.
Osmotic loading of cells has been used to investigate their physicochemical properties as well as their biosynthetic activities. The classical Kedem-Katchalsky framework for analyzing cell response to osmotic loading, which models the cell as a fluid-filled membrane, does not generally account for the possibility of partial volume recovery in response to loading with a permeating osmolyte, as observed in some experiments. The cell may be more accurately represented as a hydrated gel surrounded by a semi-permeable membrane, with the gel and membrane potentially exhibiting different properties. To help assess whether this more elaborate model of the cell is justified, this study investigates the response of spherical gels to osmotic loading, both from experiments and theory. The spherical gel is described using the framework of mixture theory. In the experimental component of the study alginate is used as the model gel, and is osmotically loaded with dextran solutions of various concentrations and molecular weight, to verify the predictions from the theoretical analysis. Results show that the mixture framework can accurately predict the transient and equilibrium response of alginate gels to osmotic loading with dextran solutions. It is found that the partition coefficient of dextran in alginate regulates the equilibrium volume response and can explain partial volume recovery based on passive transport mechanisms. The validation of this theoretical framework facilitates future investigations of the role of the protoplasm in the response of cells to osmotic loading.  相似文献   
10.
A novel mutation in the SCN5A gene is associated with Brugada syndrome   总被引:4,自引:0,他引:4  
Shin DJ  Kim E  Park SB  Jang WC  Bae Y  Han J  Jang Y  Joung B  Lee MH  Kim SS  Huang H  Chahine M  Yoon SK 《Life sciences》2007,80(8):716-724
Brugada syndrome (BS) is an inherited cardiac disorder associated with a high risk of sudden cardiac death and is caused by mutations in the SCN5A gene encoding the cardiac sodium channel alpha-subunit (Na(v)1.5). The aim of this study was to identify the genetic cause of familial BS and characterize the electrophysiological properties of a novel SCN5A mutation (W1191X). Four families and one patient with BS were screened for SCN5A mutations by PCR and direct sequencing. Wild-type (WT) and mutant Na(v)1.5 channels were expressed in tsA201 cells, and the sodium currents (I(Na)) were analyzed using the whole-cell patch-clamp technique. A novel mutation, W1191X, was identified in a family with BS. Expression of the WT or the mutant channel (Na(v)1.5/W1191X) co-transfected with the beta(1)-subunit in tsA201 cells resulted in a loss of function of Na(v)1.5 channels. While voltage-clamp recordings of the WT channel showed a distinct acceleration of Na(v)1.5 activation and fast inactivation kinetics, the Na(v)1.5/W1191X mutant failed to generate any currents. Co-expression of the WT channel and the mutant channel resulted in a 50% reduction in I(Na). No effect on activation and inactivation were observed with this heterozygous expression. The W1191X mutation is associated with BS and resulted in the loss of function of the cardiac sodium channel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号