首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  3篇
  2023年   1篇
  2007年   2篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.

The addax antelope (Addax nasomaculatus) is a species under serious threat of extinction, as it is more abundant in captivity than in the wild. However, little is known about its basic biology. The aims of this study were to determine how locomotor, feeding, aggressive, marking, and sexual behavior of male addax allocated in all-male groups vary with season and with female contact (i.e., biostimulation). The study was conducted in captive conditions, in two groups of adult males: one with no-physical contact with females, aside from visual and olfactory interactions (CF group, n = 4), and another group completely isolated from females (IF group, n = 4). The frequency of behaviors was recorded during the daytime, 4 days per season (total time of observation = 256 h). Lying, standing, walking, aggressive, marking, grazing, and ruminating behaviors as well as water and supplement consumptions varied with season (all p < 0.05). The lying, walking, marking, grazing, and ruminating behaviors were more frequently observed for CF than IF males (all p < 0.05). Also, all behaviors, except for marking, varied with the interaction between the group and seasons (all p < 0.05). Sexual behavior was extremely scarce, so it was not possible to analyze how it varied with seasons and the group. The present study suggests that management program and housing conditions, especially in ex situ breeding plans, should consider the influence of the season and the sociosexual context on the behavior of addax males.

  相似文献   
2.
It has been observed that mutualistic bipartite networks have a nested structure of interactions. In addition, the degree distributions associated with the two guilds involved in such networks (e.g., plants and pollinators or plants and seed dispersers) approximately follow a truncated power law (TPL). We show that nestedness and TPL distributions are intimately linked, and that any biological reasons for such truncation are superimposed to finite size effects. We further explore the internal organization of bipartite networks by developing a self-organizing network model (SNM) that reproduces empirical observations of pollination systems of widely different sizes. Since the only inputs to the SNM are numbers of plant and animal species, and their interactions (i.e., no data on local abundance of the interacting species are needed), we suggest that the well-known association between species frequency of interaction and species degree is a consequence rather than a cause, of the observed network structure.  相似文献   
3.
Why nestedness in mutualistic networks?   总被引:1,自引:0,他引:1  
We investigate the relationship between the nested organization of mutualistic systems and their robustness against the extinction of species. We establish that a nested pattern of contacts is the best possible one as far as robustness is concerned, but only when the least linked species have the greater probability of becoming extinct. We introduce a coefficient that provides a quantitative measure of the robustness of a mutualistic system.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号