首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   2篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2011年   1篇
  2009年   1篇
  2008年   3篇
  2006年   2篇
  2005年   1篇
  1998年   1篇
  1994年   1篇
排序方式: 共有17条查询结果,搜索用时 31 毫秒
1.
We investigated the role of local and landscape environmental variables on anurans density classified as habitat specialists and generalists in grassland landscapes, known as South Brazilian grasslands (SBG). In this region, we surveyed 187 ponds distributed over 40 landscape sampling units. For each pond, 31 local environmental variables were measured. Each landscape sampling unit was embedded within a larger regional sampling unit with different landscape properties. For each landscape and regional sampling units, 16 landscape metrics were extracted from a land cover and use map. We recorded 35 species, eleven of which are specialists in the SBG. The specialists were affected by 11 local and 2 landscape environmental variables, while generalists were affected by 14 local and one landscape environmental variable. Thus, specialists and generalists presented different relationships with local and landscape variables, but in general local variables had a greater influence on the density of anurans than the landscape variables. However, the landscape indirectly influenced local variables because higher quality ponds were in landscapes with higher percentages of natural habitat. In conclusion, reproductive sites with higher local quality and located within landscapes with higher percentages of natural grasslands are essential to conserve anurans in this habitat. Effective conservation of such sites would benefit from further studies that assess effects of land use and biotic integrity of ponds, which can help to determine (a) the relative effects of local habitat quality of ponds and (b) the effectiveness of protecting ponds and their local surroundings for anuran conservation in SBG. Abstract in Portuguese is available with online material.  相似文献   
2.
Cechin  I. 《Photosynthetica》1998,35(2):233-240
In two hybrids of sorghum (Sorghum bicolor Moench.), C51 and C42, high nitrogen concentration (HN) increased net photosynthetic rate (PN), stomatal conductance (gs), and transpiration rate (E) of well watered (HW) plants. Water stressing (LW plants) resulted in low PN, gs, and E in both hybrids, but the values were still higher in HN plants as compared to low nitrogen-grown (LN) plants. Intercellular CO2 concentration (Ci) increased in droughted plants. This increase was much higher in LN plants as compared to HN plants. Instantaneous water use efficiency was lower in LN plants as a consequence of a greater effect of water stress on photosynthesis. Leaf water potential was reduced by water stress in all treatments. Analysis of chlorophyll a fluorescence at room temperature showed that photosystem 2 (PS2) was rather tolerant to the water stress imposed. Water stress caused a slight decrease in the efficiency of excitation capture by open PS2 reaction centres (Fv/Fm). The in vivo quantum yield of PS2 photochemistry (PS2) and the photochemical quenching coefficient (qP) were slightly reduced, while the nonphotochemical quenching coefficient (qN) was increased under the water stress. However, in hybrid C42 these characters were little or not affected by the water stress.  相似文献   
3.
In this study, we describe the female reproductive cycle of Philodryas patagoniensis in south Brazil, which was described through morpho‐anatomical and histological analyses. The peak of secondary vitellogenesis occurred during winter–spring (July–December), ovulation in spring (October–December), mating and fertilization in spring–summer (October–February), oviposition in spring–autumn (October–May) and births from late spring to autumn (December–July). The diameter of vitellogenic follicles/eggs was larger in winter–spring than in other seasons. The diameter of the shell glands was also larger in winter–spring. In spite of the clear reproductive peak, gonads only showed reduced activity in the autumn. Therefore, at the individual level, females have a discontinuous cyclical reproduction; in the populational level, the reproductive cycle is seasonal semisynchronous. We support the hypothesis that P. patagoniensis have the ability to produce multiple clutches with long‐term stored sperm. Sexual dimorphism in body size was evident, and females are significantly larger and heavier than males. Larger females were able to produce follicles and eggs in larger amount and size. The maternal body size was positively related to the reproductive effort and fecundity. To conclude, we deliberated about the proximal and distal causes that influence the reproductive traits and patterns of P. patagoniensis.  相似文献   
4.
Nep1-like proteins (NLPs) are a novel family of microbial elicitors of plant necrosis that induce a hypersensitive-like response in dicot plants. The spatial structure and role of these proteins are yet unknown. In a paper published in BMC Plant Biology (2008; 8:50) we have proposed that the core region of Nep1-like proteins (NLPs) belong to the Cupin superfamily. Based on what is known about the Cupin superfamily, in this addendum to the paper we discuss how NLPs could form oligomers.Key words: quaternary structure, necrosis and ethylene inducing proteins, NLPs, MpNEP1, MpNEP2, NPP1, Moniliophthora perniciosa, Phytophthora parasiticaCupins may be organized as monomers, dimers, hexamers and octamers of β-barrel domains.1 To the best of our knowledge trimers have not been detected yet. The interaction of two monomers building up a dimeric structure is basically performed by three types of interactions: hydrophobic interactions between β-strands in different subunits, salt bridges and hydrogen bonds between β-strands. In cupin dimers, the hydrophobic interactions occur between two βI strands in different subunits (Fig. 1A and B). This strand represents the central axis of rotation of the dimer as one residue in βI interacts with the corresponding residue in the other subunit (Fig. 1B). Therefore, all residues in βI must be hydrophobic, as one residue interacts with the other subunit and the next one in the sequence interacts with the interior of the protein. Charged residues in βI would disrupt such interactions. Most cupin dimers have strong hydrophobic residues such as tryptophan (W), phenylalanine (F) and methionine (M) pointing towards the own subunit (↓), while small hydrophobic residues such as leucine (L), isoleucine (I), and valine (V) point to the other subunit (↑). A particular case is leucine that interacts with other subunits, for instance, βI = liaW (positions 217–220 in Fig. 1B) and βI = LVsw of type I and II NLP consensuses, respectively. Therefore, the pattern of hydropathicity suggests that the side chain orientation is βI = l217 ↑ i218 ↓ a219 ↑ W220 ↓ d221 ↑. However we observe that just after βI there is a charged residue (aspartate D221) which would point outwards disrupting the dimer or at least making it less stable. It is interesting to observe that the requirement for a negatively charged residue at this last position is very high: 96% of all type I NLPs contains an aspartate (D) or glutamate (E) indicating an important role for it, maybe in avoiding dimerization of the NLPs. A second interesting hypothesis is as follows: several cupins are oxygenases, decarboxylases, etc. and use a negatively charged residue, such as aspartate or glutamate as proton donor.1 Now, if the alternate pattern of side chains of the residues is βI = l217 ↓ i218 ↑ a219 ↓ W220 ↑ d221 ↓, instead of the previous one, then the aspartate or glutamate residue would point to the hydrophobic pocket and would be positioned to interact with the metal ion, as in cupins with enzymatic activity. However, there are no experimental evidences that the NLPs have enzymatic activity.Open in a separate windowFigure 1(A) Three-dimensional structure prediction for type I NLP consensus, (B) Interface between two βI strands in type I NLP consensus. From the left to the right: EF-coil with the conserved residue H162, βC and βH strands (superposed) with the conserved histidines H133 and H135 in βC, H193 and leucine L195 in βH, W220 in βI and W118 in βB. The strands in the right subunit follow the same pattern but rotated.The second type of interaction is salt bridges between charged residues in different subunits. Analyzing all interacting side chains in the 1VJ2 protein (dimer), we verify that the charged side chains of N35 and E57 (numbers in original structure) are only 2.72 Å apart. In the NLPs, this corresponds to N10836% (Q10860%) at the border of βB and E13898%. The negatively charged residue D125 helps to correct the orientation of the subunits in relation to each other avoiding any disorientation. The high conservation level of these residues suggests that NLPs are dimeric structures. However, as we will see next, only hydrophobic and charged interactions are not enough to build a dimer.Garcia et al. (2007)2 have used small angle X-ray scattering (SAXS) to show that, in solution, at low concentrations (<2 mg/ml) the two copies of the NLPs of Moniliophthora perniciosa, MpNEP1 and MpNEP2, exist as dimers and monomers, respectively. The same technique showed that at higher concentrations, >5 mg/ml, both proteins exist as dimers, as is the case for PpNPP1.2 They also reported, based on electrophoresis analysis, that PpNPP1 and MpNEP1 exist as oligomers and MpNEP2 as monomers.2 However, experiments with the PpNPP1 in size exclusion chromatography using myoglobin as size standard suggest that PpNPP1 is a monomer.3 Figure 2 compares MpNEP1, MpNEP2 and PpNPP1, where the most relevant differences in sequence are marked with asterisks (*) and are possibly related to the differences in oligomeric properties between MpNEP1 and PpNPP1 with MpNEP2. These positions are methionine M27 and leucine L35, which occur only in MpNEP2, glycine G250, which occurs only in MpNEP2 and NEP1 (Fusarium oxysporum) and lysine K31, which occurs only MpNEP2, BAB04114 (Bacillus halodurans) and AAU23136 (Bacillus licheniformis). The other residues are aspartate D28, which occurs 9 times and alanine A37 which occurs 7 times of all investigated NLPs. Thus, the sequence mdHDkiakl at the start of the NLPs seems to explain the monomeric state of MpNEP2, although at higher concentrations they form dimers. Besides the weak hydrophobic interactions, dimeric cupins and bicupins (two β barrels in the same sequence building up a dimeric-like 4d-structure) are stable structures (see Fig. 1 in ref. 4). By aggregating the first β-strand in the start domain of one β-barrel to the ABIDG β-sheet of the other β-barrel, composing a big ABIDGY β-sheet (Y is the first β-strand). For instance, using the bicupin 1L3J (oxalate decarboxylase) as template, the low confidence level β-strand at position 26–33 (v in H29D30 avv) in type I NLPs corresponds to the first β-strand. Since this proceeds from both barrels they can build a stable structure (see Fig. 1 in ref. 4). The quaternary structure is related to the presence of interaction residues in the BID β-sheet of the cupin structure. These are present in the NLPs and would enable them to form dimers.Open in a separate windowFigure 2Alignment of type I NLP consensus, PpNPP1, MpNEP1 and MpNEP2. Solid line boxes are β-strands, double line boxes are α-helices. The sequence positions marked with asterisks (*) are possibly related to the differences in oligomeric properties between MpNEP1 and PpNPP1 with MpNEP2.  相似文献   
5.
Striga hermonthica is a root hemiparasitic angiosperm nativeto the African semi-arid tropics. It is a major weed of C4 cerealsbut locally it is also an important weed of the C3 plant, rice[Oryza sativa). Infected rice plants produced 17% and 42% ofthe total biomass of uninfected plants when grown at two differentammonium nitrate concentrations, 1 and 3 mol m–3, respectively.S. hermonthica prevented grain production at both concentrationsof nitrogen. At the lower concentration no heads were produced.At the higher concentration head weight was only 6% of uninfectedcontrols. S. hermonthica also altered the partitioning of drymatter between plant parts, such that shoot growth was reducedto a greater extent than root growth. As a consequence the root-to-shootratio of infected plants was approximately five times greaterthan that of uninfected control plants. Light saturated ratesof photosynthesis In infected plants were 56% and 70% of thoseof uninfected controls, at low and high nitrogen, respectively.Infection also led to lower values of stomatal conductance althoughthe substom-atal CO2 concentration was unaffected. Analysisof the response of photosynthesis to substomatal CO2 concentration(A/CI curves) demonstrated that lower rates of photosynthesiscould not be solely attributed to lower stomatal conductances.Lower initial slopes and asymptotic rates suggest that bothcarboxylation and processes controlling regeneration of ribulose-1,5-bisphosphate are reduced by infection. The data are discussedwith respect to the influence of S. hermonthica on the growthand photosynthesis of C4 hosts, where in contrast to the situationwith rice, nitrogen feeding results in a marked alleviationof the effects of the parasite on the host. Key words: Rice, Striga, growth, photosynthesis, nitrogen  相似文献   
6.
7.
8.
The male reproductive cycle of Philodryas patagoniensis in south Brazil was described through morpho‐anatomical and histological analysis of individuals deposited in zoological collections. Spermatogenesis occurred during late autumn–winter (June–September) and spermiogenesis occurred in spring–summer (October–March). The volume of the testes was smaller (quiescent) in winter, while the tubular diameter and the epithelial height of the seminiferous tubule were larger in summer (January–March). The ductus deferens presented spermatozoa all over the year and had no seasonal variation in diameter. The length of the kidney was larger in winter–spring (July–December), although the tubular diameter and epithelium height of the sexual segment of the kidney (SSK) were larger only in winter (July–September). Total testicular regression was observed in late autumn (May), simultaneously with the peak in SSK. Therefore, at the individual level, males exhibit a discontinuous cyclical reproduction. Considering the population level, the reproductive cycle is seasonal semisynchronous, with most of the individuals showing a reproductive peak in spring–summer (October–March). Here, we present evidence to support the importance of the microscopic approach to reproductive cycle studies. Finally, we discuss the intrinsic and extrinsic factors influencing P. patagoniensis reproductive patterns.  相似文献   
9.
The effects and interaction of drought and UV-B radiation were studied in sunflower plants (Helianthus annuus L. var. Catissol-01), growing in a greenhouse under natural photoperiod conditions. The plants received approximately 1.7 W m(-2) (controls) or 8.6 W m(-2) (+UV-B) of UV-B radiation for 7 h per day. The UV-B and water stress treatments started 18 days after sowing. After a period of 12 days of stress, half of the water-stressed plants (including both UV-B irradiated or non-irradiated) were rehydrated. Both drought and UV-B radiation treatments resulted in lower shoot dry matter per plant, but there was no significant interaction between the two treatments. Water stress and UV-B radiation reduced photosynthesis, stomatal conductance and transpiration. However, the amplitude of the effects of both stressors was dependent on the interactions. This resulted in alleviation of the negative effect of drought on photosynthesis and transpiration by UV-B radiation as the water stress intensified. Intercelluar CO(2) concentration was initially reduced in all treatments compared to control plants but it increased with time. Photosynthetic pigments were not affected by UV-B radiation. Water stress reduced photosynthetic pigments only under high UV-B radiation. The decrease was more accentuated for chlorophyll a than for chlorophyll b. As a measure for the maximum efficiency of photosystem II in darkness F (v)/F (m) was used, which was not affected by drought stress but initially reduced by UV-B radiation. Independent of water supply, UV-B radiation increased the activity of pirogalol peroxidase and did not increase the level of malondialdehyde. On the other hand, water stress did not alter the activity of pirogalol peroxidase and caused membrane damage as assessed by lipid peroxidation. The application of UV-B radiation together with drought seemed to have a protective effect by lowering the intensity of lipid peroxidation caused by water stress. The content of proline was not affected by UV-B radiation but was increased by water stress under both low and high UV-B radiation. After 24 h of rehydration, most of the parameters analyzed recovered to the same level as the unstressed plants.  相似文献   
10.
Acoustically active animals may show long- and short-term adaptations in acoustic traits for coping with ambient noise. Given the key role of calls in anurans’ life history, long- and short-term adaptations are expected in species inhabiting noisy habitats. However, to disentangle such adaptations is a difficult task, incipiently addressed for Neotropical frogs. We investigated if males of a stream-breeding frog (Crossodactylus schmidti) adjust call traits according to the background noise, and if the signal-to-noise ratio (SNR) varies between call harmonics and along call notes. We measured sound pressure levels of calls and noise in the field and used a fine-scale acoustic analysis to describe the signal and noise structure and test for noise-related call adjustments. The multi-note harmonic call of C. schmidti greatly varied in the spectral structure, including a trend for increasing note amplitude along the call, a wide frequency bandwidth of the 2nd harmonic, a minor call frequency modulation due to a trend for increasing note frequency within the same harmonic, and a major call frequency modulation due to the variable location of the dominant harmonic along the call. Calls had significantly higher frequencies than the noise at the range of the 1st and the 2nd call harmonics, and significantly louder sound pressure than the noise at the range of all harmonics. Males emitted the majority of call notes showing positive SNR, and though males also emitted some notes with negative SNR, when a given harmonic was negative the other harmonics in the same note did not tend to be SNR-negative. Our results indicate that male C. schmidti show short-term acoustic adjustments that make the advertisement call effective for coping with the interference of the stream-generated noise. We suggest that the call spectral plasticity serves for coping with temporary changes in the background noise, whilst we also discuss the possibility that the redundant, harmonic-structured call may have evolved to diminish masking interference on the acoustic signal by the background noise. This is the first study to uncouple noise-related acoustic adjustments and putative long-term acoustic adaptations for a Hylodidae, providing insights on behavioral plasticity and signal evolution of stream-breeding frogs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号