首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   3篇
  27篇
  2022年   2篇
  2019年   1篇
  2018年   1篇
  2015年   1篇
  2014年   2篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   5篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1981年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
1.
Shane  Michael W.  de Vos  Martin  de Roock  Sytze  Cawthray  Gregory R.  Lambers  Hans 《Plant and Soil》2003,248(1-2):209-219
The response of internal phosphorus concentration, cluster-root initiation, and growth and carboxylate exudation to different external P supplies was investigated in Hakea prostrata R.Br. using a split-root design. After removal of most of the taproot, equal amounts of laterals were allowed to grow in two separate pots fastened together at the top, so that the separate root halves could be exposed to different conditions. Plants were grown for 10 weeks in this system; one root half was supplied with 1 M P while the other halves were supplied with 0, 1, 25 or 75 M P. Higher concentrations of P supplied to one root half significantly increased the P concentration of those roots and in the shoots. The P concentrations in root halves supplied with 1 M P were invariably low, regardless of the P concentration supplied to the other root half. Cluster root initiation was completely suppressed on root halves supplied with 25 or 75 M P, whereas it continued on the other halves supplied with 1 M P indicating that cluster-root initiation was regulated by local root P concentration. Cluster-root growth (dry mass increment) on root halves supplied with 1 M P was significantly reduced when the other half was either deprived of P or supplied with 25 or 75 M P. Cluster-root growth was favoured by a low shoot P status at a root P supply that was adequate for increased growth of roots and shoots without increased tissue P concentrations. The differences in cluster-root growth on root halves with the same P supply suggest that decreased cluster-root growth was systemically regulated. Carboxylate-exudation rates from cluster roots on root halves supplied with 1 M P were the same, whether the other root half was supplied with 1, 25 or 75 M P, but were approximately 30 times faster when the other half was deprived of P. Estimates of root P-uptake rates suggest a rather limited capacity for down-regulating P uptake when phosphate was readily available.  相似文献   
2.
* The relationship between carboxylate release from roots and the ability of the species to utilize phosphorus from sparingly soluble forms was studied by comparing Triticum aestivum, Brassica napus, Cicer arietinum, Pisum sativum, Lupinus albus, Lupinus angustifolius and Lupinus cosentinii. * Plants were grown in sand and supplied with 40 mg P kg(-1) in the sparingly soluble forms AlPO(4), FePO(4) or Ca(5)OH(PO(4))(3), or as soluble KH(2)PO(4); control plants received no P. * The ability to utilize sparingly soluble forms of P differed between forms of P supplied and species. Pisum sativum and C. arietinum did not access AlPO(4) or FePO(4) despite releasing carboxylates into the rhizosphere. * Species accessed different forms of sparingly soluble P, but no species was superior in accessing all forms. We conclude that a single trait cannot explain access to different forms of sparingly soluble P, and hypothesize that in addition to carboxylates, rhizosphere pH and root morphology are key factors.  相似文献   
3.
We investigated whether concentrations of carboxylates in the rhizosphere of chickpea (Cicer arietinum L.) roots were related to soil phosphorus levels. In a field experiment, cultivar Sona was grown at two P levels on eight soil types at three locations. There were large differences in extractable (0.2 mM CaCl2) rhizosphere carboxylate concentrations amongst the locations. The effect of P fertiliser was variable and carboxylate concentrations depended on soil type. To examine the effect of soil P in more detail, a glasshouse experiment was carried out, in which three cultivars (Heera, Sona and Tyson) were grown at four P levels on one soil type. The biomass of chickpea plants increased with increasing P level of the soil, and the root mass ratio decreased at the highest soil P level. However, rhizosphere concentrations of the carboxylates malonate, malate and citrate did not differ significantly between P treatments. This implied that there was no simple relation between available P and root exudation rates, in contrast to earlier results in studies using hydroponics. Cultivars differed in carboxylate concentration pattern: Sona and Tyson showed a tendency towards increased rhizosphere carboxylate concentrations at the second harvest, whereas the carboxylate concentration of Heera tended to decrease. It is hypothesised that chickpea roots always exude a basal level of carboxylates into the rhizosphere. They only increase carboxylate exudation considerably when the P availability is extremely low, which may occur in soils that strongly bind P.  相似文献   
4.
During anoxia, cytoplasmic pH regulation is crucial. Mechanisms of pH regulation were studied in the coleoptile of rice exposed to anoxia and pH 3.5, resulting in H(+) influx. Germinating rice seedlings survived a combination of anoxia and exposure to pH 3.5 for at least 4 d, although development was retarded and net K(+) efflux was continuous. Further experiments used excised coleoptile tips (7-10 mm) in anoxia at pH 6.5 or 3.5, either without or with 0.2 mM NO(3)(-), which distinguished two processes involved in pH regulation. Net H(+) influx (μmol g(-1) fresh weight h(-1)) for coleoptiles with NO(3)(-) was ~1.55 over the first 24 h, being about twice that in the absence of NO(3)(-), but then decreased to 0.5-0.9 as net NO(3)(-) uptake declined from ~1.3 to 0.5, indicating reduced uptake via H(+)-NO(3)(-) symports. NO(3)(-) reduction presumably functioned as a biochemical pHstat. A second biochemical pHstat consisted of malate and succinate, and their concentrations decreased substantially with time after exposure to pH 3.5. In anoxic coleoptiles, K(+) balancing the organic anions was effluxed to the medium as organic anions declined, and this efflux rate was independent of NO(3)(-) supply. Thus, biochemical pHstats and reduced net H(+) influx across the plasma membrane are important features contributing to pH regulation in anoxia-tolerant rice coleoptiles at pH 3.5.  相似文献   
5.
Harsh hakea (Hakea prostrata R.Br.) is a member of the Proteaceae family, which is highly represented on the extremely nutrient-impoverished soils in southwest Australia. When phosphorus is limiting, harsh hakea develops proteoid or cluster roots that release carboxylates that mobilize sparingly soluble phosphate in the rhizosphere. To investigate the physiology underlying the synthesis and exudation of carboxylates from cluster roots in Proteaceae, we measured O2 consumption, CO2 release, internal carboxylate concentrations and carboxylate exudation, and the abundance of the enzymes phosphoenolpyruvate carboxylase and alternative oxidase (AOX) over a 3-week time course of cluster-root development. Peak rates of citrate and malate exudation were observed from 12- to 13-d-old cluster roots, preceded by a reduction in cluster-root total protein levels and a reduced rate of O2 consumption. In harsh hakea, phosphoenolpyruvate carboxylase expression was relatively constant in cluster roots, regardless of developmental stage. During cluster-root maturation, however, the expression of AOX protein increased prior to the time when citrate and malate exudation peaked. This increase in AOX protein levels is presumably needed to allow a greater flow of electrons through the mitochondrial electron transport chain in the absence of rapid ATP turnover. Citrate and isocitrate synthesis and accumulation contributed in a major way to the subsequent burst of citrate and malate exudation. Phosphorus accumulated by harsh hakea cluster roots was remobilized during senescence as part of their efficient P cycling strategy for growth on nutrient impoverished soils.  相似文献   
6.
Plant and Soil - Organic substances in leaves of several southwest Australian native species interfere with sensitive colorimetric assays and prevent quantification of inorganic phosphate...  相似文献   
7.
? Underwater photosynthesis by aquatic plants is often limited by low availability of CO(2), and photorespiration can be high. Some aquatic plants utilize crassulacean acid metabolism (CAM) photosynthesis. The benefits of CAM for increased underwater photosynthesis and suppression of photorespiration were evaluated for Isoetes australis, a submerged plant that inhabits shallow temporary rock pools. ? Leaves high or low in malate were evaluated for underwater net photosynthesis and apparent photorespiration at a range of CO(2) and O(2) concentrations. ? CAM activity was indicated by 9.7-fold higher leaf malate at dawn, compared with at dusk, and also by changes in the titratable acidity (μmol H(+) equivalents) of leaves. Leaves high in malate showed not only higher underwater net photosynthesis at low external CO(2) concentrations but also lower apparent photorespiration. Suppression by CAM of apparent photorespiration was evident at a range of O(2) concentrations, including values below air equilibrium. At a high O(2) concentration of 2.2-fold the atmospheric equilibrium concentration, net photosynthesis was reduced substantially and, although it remained positive in leaves containing high malate concentrations, it became negative in those low in malate. ? CAM in aquatic plants enables higher rates of underwater net photosynthesis over large O(2) and CO(2) concentration ranges in floodwaters, via increased CO(2) fixation and suppression of photorespiration.  相似文献   
8.
Protoplasma - Utricularia (Lentibulariaceae) is a genus comprising around 240 species of herbaceous, carnivorous plants. Utricularia is usually viewed as an insect-pollinated genus, with the...  相似文献   
9.
The capacity of plant roots to increase their carboxylate exudation at a low plant phosphorus (P) status is an adaptation to acquire sufficient P at low soil P availability. Our objective was to compare crop species in their adaptive response to a low-P availability, in order to gain knowledge to be used for improving crop P-acquisition efficiency from soils that are low in P or that have a high capacity to retain P. In the present screening study we compared 13 crop species, grown in sand at either 3 or 300 μM of P, and measured root mass ratio, cluster-root development, rhizosphere pH and carboxylate composition of root exudates. Root mass ratio decreased with increasing P supply for Triticum aestivum L., Brassica napus L., Cicer arietinum L. and Lens culinaris Medik., and increased only for Pisum sativum L., while the Lupinus species and Vicia faba L. were not responsive. Lupinus species that had the potential to produce root clusters either increased or decreased biomass allocation to clusters at 300 μM of P compared with allocation at 3 μM of P. All Lupinus species acidified their rhizosphere more than other species did, with average pH decreasing from 6.7 (control) to 4.3 for Lupinus pilosus L. and 5.9 for Lupinus atlanticus L.; B. napus maintained the most alkaline rhizosphere, averaging 7.4 at 300 μM of P. Rhizosphere carboxylate concentrations were lowest for T. aestivum, B. napus, V. faba, and L. culinaris than for the other species. Exuded carboxylates were mainly citrate and malate for all species, with the exception of L. culinaris and C. arietinum, which produced mainly citrate and malonate. Considerable variation in the concentration of exuded carboxylates and protons was found, even with a genus. Cluster-root forming species did not invariably have the highest concentrations of rhizosphere carboxylates. Lupinus species varied both in P-uptake and in the sensitivity of their cluster-root development to external P supply. Given the carbon cost of cluster roots, a greater plasticity in their formation and exudation (i.e. reduced investment in cluster roots and exudation at higher soil P, a negative feedback response) is a desirable trait for agricultural species that may have variable access to readily available P.  相似文献   
10.
Few studies have investigated the response of perennial legumes to drought stress (DS) and their ability, following rewatering, to regrow and restore photosynthetic activity. We examined these responses for two genotypes of drought‐tolerant tedera (Bituminaria bituminosa var. albomarginata) and one genotype of lucerne (Medicago sativa). Plants were grown outdoors in 1‐m deep PVC pots with a reconstructed field soil profile, regularly watered for 8 months (winter to mid‐summer), and then moved to a glasshouse where either watering was maintained or drought was imposed for up to 47 days, before rewatering for 28 days. Drought stress greatly decreased shoot dry matter (DM) production in both species. Lucerne plants showed severe leaf desiccation after 21 days of withholding water. Relative leaf water content (RWC = 42%) and midday leaf water potential (LWP = ?6.5 MPa) decreased in tedera in response to DS, whereas leaf angle (85°) and lateral root DM both increased. Proline and pinitol accumulated in tedera leaves during DS, and their concentration declined after rewatering. Nine days after rewatering, previously drought‐stressed tedera had similar RWC and LWP to well‐watered control plants. In tedera and lucerne, 28 days after rewatering, photosynthesis and stomatal conductance were greater than in the well‐watered controls. The lateral root DM for one tedera genotype decreased during the recovery phase but for lucerne, the lateral root DM did not change during either the drought or the recovery phases. Overall, the root systems in tedera showed greater plasticity in response to DS and rewatering than in lucerne. In conclusion, tedera and lucerne showed different physiological and morphological strategies to survive and recover from DS. Proline and soluble sugars may act as a carbon source for regrowth in tedera during recovery. In comparison with lucerne, tedera's more rapid recovery after rewatering should contribute to a greater aboveground DM yield under alternating dry and wet periods. Tedera genotypes are highly heterogeneous and selecting genotypes with enhanced concentrations of pinitol and proline could be a valuable tool to improve plant performance during DS and recovery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号