首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47篇
  免费   4篇
  2021年   1篇
  2020年   3篇
  2017年   1篇
  2016年   4篇
  2015年   3篇
  2014年   3篇
  2013年   2篇
  2012年   4篇
  2011年   3篇
  2010年   3篇
  2009年   5篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
1.
Organogenesis involves a dynamic balance of the mechanisms regulating cell division, differentiation and death. The development of the chicken embryo inner ear offers a well-characterised model at the morphological level to study which signals are implicated in the modulation of cellular activation and commitment. The early developmental decisions that control the origin of the inner ear elements are just beginning to be identified by complementary in vivo and in vitro studies. Insulin-like growth factor-I (IGF-I) and nerve growth factor (NGF) are among the best characterised diffusible factors acting during inner ear development. Although the cellular actions of these factors are beginning to be understood, the signalling pathways triggered by them still remain largely unknown. In this context, viral vehicles can be used to deliver genes and then analyse their functional roles during inner ear development. A model is proposed where the actions of IGF-I and NGF contribute to the combinatorial expression of Jun and Fos family members in particular domains of the otic vesicle. Some of these mechanisms may be also implicated in otic regeneration.  相似文献   
2.
The crystal structure of the modular flavin adenine dinucleotide (FAD) synthetase from Corynebacterium ammoniagenes has been solved at 1.95 Å resolution. The structure of C. ammoniagenes FAD synthetase presents two catalytic modules—a C-terminus with ATP-riboflavin kinase activity and an N-terminus with ATP-flavin mononucleotide (FMN) adenylyltransferase activity—that are responsible for the synthesis of FAD from riboflavin in two sequential steps. In the monomeric structure, the active sites from both modules are placed 40 Å away, preventing the direct transfer of the product from the first reaction (FMN) to the second catalytic site, where it acts as substrate. Crystallographic and biophysical studies revealed a hexameric assembly formed by the interaction of two trimers. Each trimer presents a head-tail configuration, with FMN adenylyltransferase and riboflavin kinase modules from different protomers approaching the active sites and allowing the direct transfer of FMN. Experimental results provide molecular-level evidences of the mechanism of the synthesis of FMN and FAD in prokaryotes in which the oligomeric state could be involved in the regulation of the catalytic efficiency of the modular enzyme.  相似文献   
3.
SHP-1 is expressed in the nuclei of intestinal epithelial cells (IECs). Increased SHP-1 expression and phosphatase activity coincide with cell cycle arrest and differentiation in these cells. Suspecting the tumor-suppressive properties of SHP-1, a yeast two-hybrid screen of an IEC cDNA library was conducted using the full-length SHP-1 as bait. Characterization of many positive clones revealed sequences identical to a segment of the Cdk2 cDNA sequence. Interaction between SHP-1 and Cdk2 was confirmed by co-immunoprecipitations whereby co-precipitated Cdk2 phosphorylated SHP-1 protein. Inhibition of Cdk2 (roscovitine) or proteasome (MG132) was associated with an enhanced nuclear punctuate distribution of SHP-1. Double labeling localization studies with signature proteins of subnuclear domains revealed a co-localization between the splicing factor SC35 and SHP-1 in bright nucleoplasmic foci. Using Western blot analyses with the anti-SHP-1 antibody recognizing the C terminus, a lower molecular mass species of 45 kDa was observed in addition to the full-length 64-65-kDa SHP-1 protein. Treatment with MG132 led to an increase in expression of the full-length SHP-1 protein while concomitantly leading to a decrease in the levels of the lower mass 45-kDa molecular species. Further Western blots revealed that the 45-kDa protein corresponds to the C-terminal portion of SHP-1 generated from proteasome activity. Mutational analysis of Tyr(208) and Ser(591) (a Cdk2 phosphorylation site) residues on SHP-1 abolished the expression of the amino-truncated 45-kDa SHP-1 protein. In conclusion, our results indicate that Cdk2-associated complexes, by targeting SHP-1 for proteolysis, counteract the ability of SHP-1 to block cell cycle progression of IECs.  相似文献   
4.
Sphingolipid metabolites have been involved in the regulation of proliferation, differentiation and apoptosis. While cellular mechanisms of these processes have been extensively analysed in the post-mitotic neurons, little is known about proliferating neuronal precursors. We have taken as a model of neuroblasts the embryonic hippocampal cell line HN9.10e. Apoptosis was induced by serum deprivation and by treatment with N-acetylsphingosine (C2-Cer), a membrane-permeant analogue of the second messenger ceramide. Following C2-Cer addition, cytochrome c was released from mitochondria, [Ca(2+)](i) and caspase-3-like activity increased. Both cytochrome c release and rise of [Ca(2+)](i) occurred before caspase-3 activation and nuclear condensation. The intracellular levels of ceramide peaked at 1h following the serum deprivation. These results indicate that the serum deprivation induces a rise in the intracellular ceramide level, and that increased ceramide concentration leads to calcium dysregulation and release of cytochrome c followed by caspase-3 activation. We show that cytochrome c is released without a loss of mitochondrial transmembrane potential.  相似文献   
5.
The role of the negative charge of the E139 side-chain of Anabaena Ferredoxin-NADP+ reductase (FNR) in steering appropriate docking with its substrates ferredoxin, flavodoxin and NADP+/H, that leads to efficient electron transfer (ET) is analysed by characterization of several E139 FNR mutants. Replacement of E139 affects the interaction with the different FNR substrates in very different ways. Thus, while E139 does not appear to be involved in the processes of binding and ET between FNR and NADP+/H, the nature and the conformation of the residue at position 139 of Anabaena FNR modulates the precise enzyme interaction with the protein carriers ferredoxin (Fd) and flavodoxin (Fld). Introduction of the shorter aspartic acid side-chain at position 139 produces an enzyme that interacts more weakly with both ET proteins. Moreover, the removal of the charge, as in the E139Q mutant, or the charge-reversal mutation, as in E139K FNR, apparently enhances additional interaction modes of the enzyme with Fd, and reduces the possible orientations with Fld to more productive and stronger ones. Hence, removal of the negative charge at position 139 of Anabaena FNR produces a deleterious effect in its ET reactions with Fd whereas it appears to enhance the ET processes with Fld. Significantly, a large structural variation is observed for the E139 side-chain conformer in different FNR structures, including the E139K mutant. In this case, a positive potential region replaces a negative one in the wild-type enzyme. Our observations further confirm the contribution of both attractive and repulsive interactions in achieving the optimal orientation for efficient ET between FNR and its protein carriers.  相似文献   
6.
Contribution of three regions (phosphate-binding, 50’s and 90’s loops) of Anabaena apoflavodoxin to FMN binding and reduction potential was studied. Thr12 and Glu16 did not influence FMN redox properties, but Thr12 played a role in FMN binding. Replacement of Trp57 with Glu, Lys or Arg moderately shifted Eox/sq and Esq/hq and altered the energetic of the FMN redox states binding profile. Our data indicate that the side chain of position 57 does not modulate Eox/sq by aromatic stacking or solvent exclusion, but rather by influencing the relative strength of the H-bond between the N(5) of the flavin and the Asn58-Ile59 bond. A correlation was observed between the isoalloxazine increase in solvent accessibility and less negative Esq/hq. Moreover, Esq/hq became less negative as positively charged residues were added near to the isoalloxazine. Ile59 and Ile92 were simultaneously mutated to Ala or Glu. These mutations impaired FMN binding, while shifting Esq/hq to less negative values and Eox/sq to more negative. These effects are discussed on the bases of the X-ray structures of some of the Fld mutants, suggesting that in Anabaena Fld the structural control of both electron transfer steps is much more subtle than in other Flds.  相似文献   
7.
Plants are sessile organisms and, consequently, are exposed to a plethora of stresses in their local habitat. As a result, different populations of a species are subject to different selection pressures leading to adaptation to local conditions and intraspecific divergence. The annual brassicaceous plant Arabidopsis thaliana is an attractive model for ecologists and evolutionary biologists due to the availability of a large collection of resequenced natural accessions. Accessions of A. thaliana display one of two different life cycle strategies: summer and winter annuals. We exposed a collection of 308 European Arabidopsis accessions, that have been genotyped for 250K SNPs, to a range of stresses: one abiotic stress (drought), four biotic stresses (Pieris rapae caterpillars, Plutella xylostella caterpillars, Frankliniella occidentalis thrips and Myzus persicae aphids) and two combined stresses (drought plus P. rapae and Botrytis cinerea fungus plus P. rapae). We identified heritable genetic variation for responses to the different stresses, estimated by narrow‐sense heritability. We found that accessions displaying different life cycle strategies differ in their response to stresses. Winter annuals are more resistant to drought, aphids and thrips and summer annuals are more resistant to P. rapae and P. xylostella caterpillars. Summer annuals are also more resistant to the combined stresses of drought plus P. rapae and infection by the fungus Botryris cinerea plus herbivory by P. rapae. Adaptation to drought displayed a longitudinal gradient. Finally, trade‐offs were recorded between the response to drought and responses to herbivory by caterpillars of the specialist herbivore P. rapae.  相似文献   
8.
9.
10.
The brown tail moth (BTM) Euproctis chrysorrhoea (Linnaeus 1758) (Lepidoptera: Erebidae) is a forest and ornamental pest in Europe and the United States. Its extreme polyphagy, and documented phenological shift associated with host use suggest the presence of distinct host-races. To test this hypothesis, we sampled BTM infesting different host species in several locations along its distribution, and used DNA sequence data (a total of 1,672 bp from cytochrome c oxidase subunit I, elongation factor 1-alpha, and wingless) to produce haplotype networks and reconstruct the phylogenetic relationships between individuals. Population genetic diversity indices pointed out a higher genetic diversity in Europe, particularly in the samples from southern Spain and southern England. Lower F ST values were found between geographically closer populations when compared to more distant ones, but analyses of molecular variance and Mantel tests failed to reveal geographically associated genetic differentiation. However, haplotype networks and phylogenetic reconstructions revealed a previously unknown genetic differentiation within the BTM, with one lineage circumscribed to southern Europe. Although BTM haplotypes did not cluster according to their host plant, host-associated haplotypes were observed within certain geographic regions. Hence, our data support the existence of host-races of BTM within southern Spain and southern England, where populations from different hosts occur in sympatry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号