首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   10篇
  2021年   3篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   2篇
  2013年   4篇
  2012年   5篇
  2011年   10篇
  2010年   1篇
  2009年   4篇
  2008年   5篇
  2007年   4篇
  2006年   1篇
  2005年   6篇
  2004年   4篇
  2003年   4篇
  2002年   5篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1937年   1篇
  1934年   1篇
  1931年   1篇
  1926年   1篇
排序方式: 共有86条查询结果,搜索用时 31 毫秒
1.
The essential mammalian gene TACC3 is frequently mutated and amplified in cancers and its fusion products exhibit oncogenic activity in glioblastomas. TACC3 functions in mitotic spindle assembly and chromosome segregation. In particular, phosphorylation on S558 by the mitotic kinase, Aurora-A, promotes spindle recruitment of TACC3 and triggers the formation of a complex with ch-TOG-clathrin that crosslinks and stabilises kinetochore microtubules. Here we map the Aurora-A-binding interface in TACC3 and show that TACC3 potently activates Aurora-A through a domain centered on F525. Vertebrate cells carrying homozygous F525A mutation in the endogenous TACC3 loci exhibit defects in TACC3 function, namely perturbed localization, reduced phosphorylation and weakened interaction with clathrin. The most striking feature of the F525A cells however is a marked shortening of mitosis, at least in part due to rapid spindle assembly. F525A cells do not exhibit chromosome missegregation, indicating that they undergo fast yet apparently faithful mitosis. By contrast, mutating the phosphorylation site S558 to alanine in TACC3 causes aneuploidy without a significant change in mitotic duration. Our work has therefore defined a regulatory role for the Aurora-A-TACC3 interaction beyond the act of phosphorylation at S558. We propose that the regulatory relationship between Aurora-A and TACC3 enables the transition from the microtubule-polymerase activity of TACC3-ch-TOG to the microtubule-crosslinking activity of TACC3-ch-TOG-clathrin complexes as mitosis progresses. Aurora-A-dependent control of TACC3 could determine the balance between these activities, thereby influencing not only spindle length and stability but also the speed of spindle formation with vital consequences for chromosome alignment and segregation.  相似文献   
2.
3.
4.
Intrafamilial spread of Helicobacter pylori: a genetic analysis   总被引:4,自引:0,他引:4  
Background. A high incidence of Helicobacter pylori among family members of children with H. pylori gastritis has previously been documented on biopsy material. The main objective of this study was the genetic clarification of H. pylori strains involved in intrafamilial dispersion. Materials and Methods. Formalin‐fixed, paraffin‐embedded material of antral mucosa from 32 members of 11 families was studied for the presence of genetic homogeneity. To achieve this goal, the entire genome of H. pylori was studied by the polymerase chain reaction (PCR)‐based random amplified polymorphic DNA (RAPD) fingerprinting method. Furthermore, the Urease A gene was analyzed using a multiplex PCR‐assay and an alternative mutation detection method based on the Hydrolink? analysis. Results. RAPD fingerprinting confirmed that closely related H. pylori strains were involved in the intrafamilial dispersion. Mutations and small deletions in Urease A gene were found in 22 out of 32 individuals. Conclusions. The homology of the H. pylori genome in members of the same family strongly supports the hypothesis of transmission of H. pylori from person‐to‐person or from a common source.  相似文献   
5.
The ligand-binding surface of the T-lymphocyte glycoprotein CD2 has an unusually high proportion of charged residues, and ionic interactions are thought to play a significant role in defining the ligand specificity and binding affinity of CD2 with the structurally homologous ligands CD48 (in rodents) and CD58 (in humans). The determination of the electrostatic properties of these proteins can therefore contribute to our understanding of structure-activity relationships for these adhesion complexes that underpin T-cell adhesion to antigen-presenting cells. In this study, we investigated the pH titration behavior of the carboxyl groups of the N-terminal domain of rat CD2 (CD2d1) using the chemical shifts of backbone amide nitrogen-15 ((15)N) and proton NMR resonances, and carboxyl carbon-13 ((13)C) signals. The analysis revealed the presence of a glutamate (Glu41) on the binding surface of rat CD2 with an unusually elevated acidity constant (pK(a) = 6.73) for CD2d1 samples at 1.2 mM concentration. pH titration of CD2d1 at low protein concentration (0.1 mM) resulted in a slight decrease of the measured pK(a) of Glu41 to 6.36. The ionization of Glu41 exhibited reciprocal interactions with a second glutamate (Glu29) in a neighboring location, with both residues demonstrating characteristic biphasic titration behavior of the carboxyl (13)C resonances. Measurements at pH 5.5 of the two-bond deuterium isotope shift for the (13)C carboxyl resonances for Glu41 and Glu29 [(2)DeltaC(delta)(O(epsilon)D) = 0.2 and 0.1 ppm, respectively] were consistent with the assignment of the anomalous pK(a) to Glu41, under the strong influence of Glu29. The characterization of single site mutations of CD2d1 residues Glu41 and Glu29 to glutamine confirmed the anomalous pK(a) for Glu41, and indicated that electrostatic interaction with the Glu29 side chain is a significant contributing influence for this behavior in the wild-type protein. The implications of these observations are discussed with respect to recent structural and functional analyses of the interaction of rat CD2 with CD48. In particular, CD2 Glu41 must be a candidate residue to explain the previously reported strong pH dependence of binding of these two proteins in vitro.  相似文献   
6.
7.
The limited international resources for economic aid and conservation can only mitigate poverty and losses of biodiversity. Hence, developing nations must establish the capacity to resolve their problems. Additionally, policy-makers and donors need to obtain scientific input on issues such as global change and ecosystem services. We propose that for nations rich in biodiversity, ecosystem services derived from bioprospecting, or drug discovery, could contribute to economic development. In the case where unstudied samples are shipped abroad for research, the chances of obtaining royalties are infinitesimally small. Therefore developing nations will only realize benefits from bioprospecting through in-country research on their own biodiversity. Policy-makers and donors have failed to appreciate the value of this approach. In order to provide an example of the inherent links between conservation and sustainable economic development, we initiated a drug discovery effort in Panama that emphasizes local benefit. As much of the drug discovery process as possible is conducted in Panamanian laboratories, providing jobs dependent on intact biodiversity and enhancing local research and training. In short, research, plus the spin-offs from research, provide immediate and long-lasting benefits to Panama. The connection between conservation and development has been highlighted in publicity about the project in Panama’s urban media. This provides a constructive alternative to the perception the among the urban populace that economic development inevitably competes with conservation. In summary, our program uses biodiversity to promote human health as well as to support research capacity, economic development and conservation within Panama. The program provides an example of the widely recognized but little developed concept of bioprospecting research as an ecosystem service.  相似文献   
8.

Background

Ampicillin-resistant Enterococcus faecium (ARE) has emerged as a nosocomial pathogen. Here, we quantified ARE carriage in different community sources and determined genetic relatedness with hospital ARE.

Methods and Results

ARE was recovered from rectal swabs of 24 of 79 (30%) dogs, 11 of 85 (13%) cats and 0 of 42 horses and from 3 of 40 (8%) faecal samples of non-hospitalized humans receiving amoxicillin. Multi-locus Sequence Typing revealed 21 sequence types (STs), including 5 STs frequently associated with hospital-acquired infections. Genes previously found to be enriched in hospital ARE, such as IS16, orf903, orf905, orf907, were highly prevalent in community ARE (≥79%), while genes with a proposed role in pathogenesis, such as esp, hyl and ecbA, were found rarely (≤5%) in community isolates. Comparative genome analysis of 2 representative dog isolates revealed that the dog strain of ST192 was evolutionarily closely linked to two previously sequenced hospital ARE, but had, based on gene content, more genes in common with the other, evolutionarily more distantly related, dog strain (ST266).

Conclusion

ARE were detected in dogs, cats and sporadically in healthy humans, with evolutionary linkage to hospital ARE. Yet, their accessory genome has diversified, probably as a result of niche adaptation.  相似文献   
9.

Purpose

To evaluate changes in nucleus pulposus volume as a potential parameter for the effects of disc decompression.

Methods

Fifty-two discs (T8 to L1) were extracted from 26 pigs and separated into thoracic (T8 to T11) and thoracolumbar discs (T12 to L1). The discs were imaged using 7.1 Tesla ultrahigh-field magnetic resonance imaging (MRI) with acquisition of axial T2-weighted turbo spin-echo sequences for determination of baseline and postinterventional nucleus pulposus volumes. Volumes were calculated using OsiriX® (http://www.osirix-viewer.com). After randomization, one group was treated with nucleoplasty, while the placebo group was treated with an identical procedure but without coblation current. The readers analyzing the MR images were blinded to the kind of procedure performed. Baseline and postinterventional volumes were compared between the nucleoplasty and placebo group.

Results

Average preinterventional nucleus volume was 0.799 (SD: 0.212) ml. Postinterventional volume reduction in the nucleoplasty group was significant at 0.052 (SD: 0.035) ml or 6.30% (p<0.0001) (thoracic discs) and 0.082 (SD: 0.042) ml or 7.25% (p = 0.0078) (thoracolumbar discs). Nucleoplasty achieved volume reductions of 0.114 (SD: 0.054) ml or 14.72% (thoracic) and 0.093 (SD: 0.081) ml or 11.61% (thoracolumbar) compared with the placebo group.

Conclusions

Nucleoplasty significantly reduces thoracic and thoracolumbar nucleus pulposus volumes in porcine discs.  相似文献   
10.
The influence of 2-methoxyestradiol (2ME) was investigated on cell growth, morphology and spindle formation in a tumorigenic (MCF-7) and non-tumorigenic (MCF-12A) epithelial breast cell line. Inhibition of cell growth was more pronounced in the MCF-7 cells compared to the MCF-12A cells following 2ME treatment. Dose-dependent studies (10(-5)-10(-9) M) revealed that 10(-6) M 2ME inhibited cell growth by 44% in MCF-12A cells and by 84% in MCF-7 cells (p-value < 0.05). 2ME-treated MCF-7 cells showed abnormal metaphase cells, membrane blebbing, apoptotic cells and disrupted spindle formation. These observations were either absent or less prominent in MCF-12A cells. 2ME had no effect on the length of the cell cycle between S-phase and the time a mitotic peak was reached in either cell line but MCF-7 cells were blocked in mitosis with no statistically significant alterations in the phosphorylation status of Cdc25C. Nevertheless, Cdc2 activity was significantly increased in MCF-7 cells compared to MCF-12A cells (p-value < 0.05). The results indicate that 2ME disrupts mitotic spindle formation and enhances Cdc2 kinase activity, leading to persistence of the spindle checkpoint and thus prolonged metaphase arrest that may result in the induction of apoptosis. The tumorigenic MCF-7 cells were especially sensitive to 2ME treatment compared to the normal MCF-12A cells. Therefore, differential mechanism(s) of growth inhibition are evident between the normal and tumorigenic cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号