首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   1篇
  2021年   2篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   5篇
  2013年   6篇
  2012年   4篇
  2011年   3篇
  2010年   2篇
  2009年   3篇
  2008年   5篇
  2007年   1篇
  2006年   2篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1989年   2篇
  1987年   1篇
  1986年   3篇
  1983年   1篇
  1980年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有65条查询结果,搜索用时 312 毫秒
1.
Polyclonal antiserum and monoclonal antibodies raised against the sodium channel from rat skeletal muscle sarcolemma have been immobilized on Sepharose and used to immunoaffinity purify this channel directly from skeletal muscle without the intervening purification of surface membranes. These antibodies isolate a approximately 260-kDa protein from whole muscle, although each purifies predominantly a 150-kDa component when isolated sarcolemmal membranes are used as starting material. A 45-kDa band is also found in the material purified from sarcolemma but not that obtained from whole muscle. In addition, these immunoaffinity columns isolate a 38-kDa band from both whole muscle and sarcolemma that copurifies with the 260-kDa protein. In some preparations this component appears as two closely spaced bands of 37 and 39 kDa. These small subunits coelute with the 260-kDa subunit when thiocyanate gradients are used to displace protein bound to the immunoaffinity columns and behave as integral components of the sodium channel. Estimates of stoichiometry were made for the large and small subunits of the muscle channel protein. After correction for labeling efficiency, values consistent with a ratio of one 260-kDa subunit to one 38-kDa subunit were obtained. We conclude that the rat skeletal muscle sodium channel contains a large alpha subunit of approximately 260 kDa that is sensitive to proteolytic nicking during the isolation of sarcolemmal membranes. In addition, at least one 38-kDa beta subunit is associated with each alpha subunit in the native channel.  相似文献   
2.
The aim of this study was to investigate the effect of feeding rainbow trout (Oncorhynchus mykiss) peptidoglycan (PG) enriched diets on antimicrobial peptide (AMP) gene expression. Fish were divided into 5 groups and fed diets containing 0, 5, 10, 50 and 100 mg PG/Kg, and sampled 1, 7 and 14 days later. The expression of eight AMP genes (four defensins, two cathelicidins and two liver expressed AMPs) was determined in skin, gill, gut and liver, tissues important for first lines of defence or production of acute phase proteins. Up-regulation of many AMPs was found after feeding the PG enriched diets, with sequential expression seen over the time course studied, where defensins were typically expressed early and cathelicidins and LEAPs later on. A number of clear differences in AMP responsiveness between the tissues examined were also apparent. Of the four PG concentrations used, 5 mg PG/Kg did not always elicit AMP gene induction or to the same degree as seen with the other diets. The three higher dose groups generally showed similar trends although differences in fold change were more pronounced in the 50 and 100 mg PG/Kg groups. Curiously several AMPs were down-regulated after 14 days of feeding in gills, gut and liver. Nevertheless, overall the PG enriched diets had a positive effect on AMP expression. Further investigations now need to be undertaken to confirm whether this higher AMP gene expression correlates with protection against common bacterial diseases and if PG enriched diets have value as a means to temporarily boost the piscine immune system.  相似文献   
3.

Background

Alpha-synuclein is a key protein implicated in the pathogenesis of Parkinson's disease (PD). It is the main component of the Lewy bodies, a cardinal neuropathological feature in the disease. In addition, whole locus multiplications and point mutations in the gene coding for alpha-synuclein lead to autosomal dominant monogenic PD. Over the past decade, research on PD has impelled the development of new animal models based on alpha-synuclein. In this context, transgenic mouse lines have failed to reproduce several hallmarks of PD, especially the strong and progressive dopaminergic neurodegeneration over time that occurs in the patients. In contrast, viral vector-based models in rats and non-human primates display prominent, although highly variable, nigral dopaminergic neuron loss. However, the few studies available on viral vector-mediated overexpression of alpha-synuclein in mice report a weak neurodegenerative process and no clear Lewy body-like pathology. To address this issue, we performed a comprehensive comparative study of alpha-synuclein overexpression by means of recombinant adeno-associated viral vectors serotype 2/7 (rAAV2/7) at different doses in adult mouse substantia nigra.

Results

We noted a significant and dose-dependent alpha-synucleinopathy over time upon nigral viral vector-mediated alpha-synuclein overexpression. We obtained a strong, progressive and dose-dependent loss of dopaminergic neurons in the substantia nigra, reaching a maximum of 82% after 8 weeks. This effect correlated with a reduction in tyrosine hydroxylase immunoreactivity in the striatum. Moreover, behavioural analysis revealed significant motor impairments from 12 weeks after injection on. In addition, we detected the presence of alpha-synuclein-positive aggregates in the remaining surviving neurons. When comparing wild-type to mutant A53T alpha-synuclein at the same vector dose, both induced a similar degree of cell death. These data were supported by a biochemical analysis that showed a net increase in soluble and insoluble alpha-synuclein expression over time to the same extent for both alpha-synuclein variants.

Conclusions

In conclusion, our in vivo data provide evidence that strong and significant alpha-synuclein-induced neuropathology and progressive dopaminergic neurodegeneration can be achieved in mouse brain by means of rAAV2/7.
  相似文献   
4.
The raft hypothesis proposes that microdomains enriched in sphingolipids, cholesterol, and specific proteins are transiently formed to accomplish important cellular tasks. Equivocally, detergent-resistant membranes were initially assumed to be identical to membrane rafts, because of similarities between their compositions. In fact, the impact of detergents in membrane organization is still controversial. Here, we use phase contrast and fluorescence microscopy to observe giant unilamellar vesicles (GUVs) made of erythrocyte membrane lipids (erythro-GUVs) when exposed to the detergent Triton X-100 (TX-100). We clearly show that TX-100 has a restructuring action on biomembranes. Contact with TX-100 readily induces domain formation on the previously homogeneous membrane of erythro-GUVs at physiological and room temperatures. The shape and dynamics of the formed domains point to liquid-ordered/liquid-disordered (Lo/Ld) phase separation, typically found in raft-like ternary lipid mixtures. The Ld domains are then separated from the original vesicle and completely solubilized by TX-100. The insoluble vesicle left, in the Lo phase, represents around 2/3 of the original vesicle surface at room temperature and decreases to almost 1/2 at physiological temperature. This chain of events could be entirely reproduced with biomimetic GUVs of a simple ternary lipid mixture, 2:1:2 POPC/SM/chol (phosphatidylcholine/sphyngomyelin/cholesterol), showing that this behavior will arise because of fundamental physicochemical properties of simple lipid mixtures. This work provides direct visualization of TX-100-induced domain formation followed by selective (Ld phase) solubilization in a model system with a complex biological lipid composition.  相似文献   
5.
The raft hypothesis proposes that microdomains enriched in sphingolipids, cholesterol, and specific proteins are transiently formed to accomplish important cellular tasks. Equivocally, detergent-resistant membranes were initially assumed to be identical to membrane rafts, because of similarities between their compositions. In fact, the impact of detergents in membrane organization is still controversial. Here, we use phase contrast and fluorescence microscopy to observe giant unilamellar vesicles (GUVs) made of erythrocyte membrane lipids (erythro-GUVs) when exposed to the detergent Triton X-100 (TX-100). We clearly show that TX-100 has a restructuring action on biomembranes. Contact with TX-100 readily induces domain formation on the previously homogeneous membrane of erythro-GUVs at physiological and room temperatures. The shape and dynamics of the formed domains point to liquid-ordered/liquid-disordered (Lo/Ld) phase separation, typically found in raft-like ternary lipid mixtures. The Ld domains are then separated from the original vesicle and completely solubilized by TX-100. The insoluble vesicle left, in the Lo phase, represents around 2/3 of the original vesicle surface at room temperature and decreases to almost 1/2 at physiological temperature. This chain of events could be entirely reproduced with biomimetic GUVs of a simple ternary lipid mixture, 2:1:2 POPC/SM/chol (phosphatidylcholine/sphyngomyelin/cholesterol), showing that this behavior will arise because of fundamental physicochemical properties of simple lipid mixtures. This work provides direct visualization of TX-100-induced domain formation followed by selective (Ld phase) solubilization in a model system with a complex biological lipid composition.  相似文献   
6.
Myocardial constitutive No production depends on the activity of both endothelial and neuronal NOS (eNOS and nNOS, respectively). Stimulation of myocardial β3-adrenergic receptor (β3-AR) produces a negative inotropic effect that is dependent on eNOS. We evaluated whether nNOS also plays a role in β3-AR signaling and found that the β3-AR-mediated reduction in cell shortening and [Ca2+]i transient amplitude was abolished both in eNOS−/− and nNOS−/− left ventricular (LV) myocytes and in wild type LV myocytes after nNOS inhibition with S-methyl-l-thiocitrulline. LV superoxide (O2˙̄) production was increased in nNOS−/− mice and reduced by l-Nω-nitroarginine methyl ester (l-NAME), indicating uncoupling of eNOS activity. eNOS S-glutathionylation and Ser-1177 phosphorylation were significantly increased in nNOS−/− myocytes, whereas myocardial tetrahydrobiopterin, eNOS Thr-495 phosphorylation, and arginase activity did not differ between genotypes. Although inhibitors of xanthine oxidoreductase (XOR) or NOX2 NADPH oxidase caused a similar reduction in myocardial O2˙̄, only XOR inhibition reduced eNOS S-glutathionylation and Ser-1177 phosphorylation and restored both eNOS coupled activity and the negative inotropic and [Ca2+]i transient response to β3-AR stimulation in nNOS−/− mice. In summary, our data show that increased O2˙̄ production by XOR selectively uncouples eNOS activity and abolishes the negative inotropic effect of β3-AR stimulation in nNOS−/− myocytes. These findings provide unequivocal evidence of a functional interaction between the myocardial constitutive NOS isoforms and indicate that aspects of the myocardial phenotype of nNOS−/− mice result from disruption of eNOS signaling.  相似文献   
7.
Characterization of disease models of neurodegenerative disorders requires a systematic and comprehensive phenotyping in a highly standardized manner.Therefore,automated high-resolution behavior test systems such as the homecage based LabMaster system are of particular interest.We demonstrate the power of the automated LabMaster system by discovering previously unrecognized features of a recently characterized atxn3 mutant mouse model.This model provided neurological symptoms including gait ataxia,tremor,weight loss and premature death at the age of 12 months usually detectable just 2 weeks before the mice died.Moreover,using the LabMaster system we were able to detect hypoactivity in presymptomatic mutant mice in the dark as well as light phase.Additionally,we analyzed inflammation,immunological and hematological parameters,which indicated a reduced immune defense in phenotypic mice.Here we demonstrate that a detailed characterization even of organ systems that are usually not affected in SCA3 is important for further studies of pathogenesis and required for the preclinical therapeutic studies.  相似文献   
8.
M.A. casadei and B.M. mackey. 1997. Exponential phase cells of Escherichia coli NCTC 8164 that were centrifuged at 2000g for 20 min at 4 °C were more resistant to subsequent pressure treatment than cells grown in trypticase soya broth (TSB) and treated without any centrifugation steps. The effects of mild pressure stress (200 kPa for 20 min) and temperature stress (a shift from 37 °C to 4 °C) involved in the centrifugation procedure were analysed separately. It appeared that the increase in pressure resistance obtained following centrifugation was mainly due to the gradual temperature decrease during centrifugation, while the mild pressure stress seemed to play a smaller role in the response.  相似文献   
9.
Indole-3-pyruvic acid luminesces in aerated dimethyl-sulfoxide solutions in the presence of potassium tert-butoxide. The chemiluminescence spectrum indicates the occurrence of multiple bands whose relative intensities change with time. This behaviour is connected with the presence of two forms of indole-pyruvic acid and with two different reactions, namely at the side chain giving indole-3-carboxaldehyde and at the indole nucleus giving ultimately a product of the N-formyl-kynurenine type.The results suggest that indole-pyruvate is a potential luciferin. This inference is strengthened by the fact that it can originate “in vivo” both indole-aldehyde and oxalate.The reaction at the indole nucleus is tentatively considered a model for tryptophan dioxygenase and related systems.  相似文献   
10.
Detergents are amphiphilic molecules widely used to solubilize biological membranes and/or extract their components. Nevertheless, because of the complex composition of biomembranes, their solubilization by detergents has not been systematically studied. In this review, we address the solubilization of erythrocytes, which provide a relatively simple, robust and easy to handle biomembrane, and of biomimetic models, to stress the role of the lipid composition on the solubilization process. First, results of a systematic study on the solubilization of human erythrocyte membranes by different series of non-ionic (Triton, CxEy, Brij, Renex, Tween), anionic (bile salts) and zwitterionic (ASB, CHAPS) detergents are shown. Such quantitative approach allowed us to propose Re sat—the effective detergent/lipid molar ratio in the membrane for the onset of hemolysis as a new parameter to classify the solubilization efficiency of detergents. Second, detergent-resistant membranes (DRMs) obtained as a result of the partial solubilization of erythrocytes by TX-100, C12E8 and Brij detergents are examined. DRMs were characterized by their cholesterol, sphingolipid and specific proteins content, as well as lipid packing. Finally, lipid bilayers of tuned lipid composition forming liposomes were used to investigate the solubilization process of membranes of different compositions/phases induced by Triton X-100. Optical microscopy of giant unilamellar vesicles revealed that pure phospholipid membranes are fully solubilized, whereas the presence of cholesterol renders the mixture partially or even fully insoluble, depending on the composition. Additionally, Triton X-100 induced phase separation in raft-like mixtures, and selective solubilization of the fluid phase only.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号