全文获取类型
收费全文 | 122篇 |
免费 | 4篇 |
专业分类
126篇 |
出版年
2022年 | 1篇 |
2021年 | 7篇 |
2020年 | 1篇 |
2019年 | 1篇 |
2018年 | 2篇 |
2017年 | 2篇 |
2016年 | 3篇 |
2015年 | 5篇 |
2014年 | 9篇 |
2013年 | 6篇 |
2012年 | 7篇 |
2011年 | 9篇 |
2010年 | 6篇 |
2009年 | 3篇 |
2008年 | 9篇 |
2007年 | 5篇 |
2006年 | 3篇 |
2005年 | 5篇 |
2004年 | 9篇 |
2002年 | 2篇 |
2001年 | 1篇 |
2000年 | 6篇 |
1999年 | 2篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1994年 | 1篇 |
1986年 | 1篇 |
1985年 | 1篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1980年 | 2篇 |
1979年 | 1篇 |
1976年 | 1篇 |
1975年 | 2篇 |
1974年 | 1篇 |
1970年 | 1篇 |
1967年 | 1篇 |
1966年 | 1篇 |
1965年 | 1篇 |
1930年 | 1篇 |
1925年 | 1篇 |
排序方式: 共有126条查询结果,搜索用时 0 毫秒
1.
Retinitis pigmentosa is a heterogeneous group of retinal degenerations characterized by a progressive loss of photoreceptors through the process of apoptosis. The apoptotic cell death of photoreceptors appears to represent a final common pathway in the pathology of retinitis pigmentosa. Previous studies have reported the ability of antioxidants to ameliorate light-induced retinal degeneration, suggesting a role for oxidative stress in photoreceptor cell death. This study demonstrates an early and sustained increase in intracellular reactive oxygen species accompanied by a rapid depletion of intracellular glutathione in an in vitro model of photoreceptor apoptosis. These early changes in the cellular redox state precede disruption of mitochondrial transmembrane potential, nuclear condensation, DNA nicking, and cell shrinkage, all of which are well-characterized events of apoptotic cell death. The ability of zinc chloride and pyrrolidine dithiocarbamate, two established antioxidants, to inhibit photoreceptor apoptosis through the scavenging of intracellular reactive oxygen species establishes a role for reactive oxygen species as possible mediators of in vitro photoreceptor apoptosis. This study provides a molecular basis for the inhibition of photoreceptor apoptosis by antioxidants. 相似文献
2.
3.
4.
Georgirene D. Vladutiu Patrick J. Carmody Mario C. Rattazzi 《Preparative biochemistry & biotechnology》2013,43(2):147-159
A highly specific method for the purification of human 8-hexos-aminidase A employing immunoaffinity chromatography is described. Using an antiserum against the unique antigenic determinant, a, of 8-hexosaminidase A, and elution with 8.0M urea, a 283-or 1+17-fold purification of the enzyme was obtained in a single step from crude human placental homogenate. 相似文献
5.
The plant parasitic nematode Heterodera schachtii invades the roots of Arabidopsis thaliana to induce nematode feeding structures in the central cylinder. During nematode development, the parasites feed exclusively from these structures. Thus, high sugar import and specific sugar processing of the affected plant cells is crucial for nematode development. In the present work, we found starch accumulation in nematode feeding structures and therefore studied the expression genes involved in the starch metabolic pathway. The importance of starch synthesis was further shown using the Atss1 mutant line. As it is rather surprising to find starch accumulation in cells characterised by a high nutrient loss, we speculate that starch serves as long- and short-term carbohydrate storage to compensate the staggering feeding behaviour of the parasites.Key words: Heterodera schachtii, Arabidopsis, nematode, starch metabolism, syncytiaThe obligate plant parasitic nematode Heterodera schachtii is entirely dependent on a system of nutrient supply provided by the plant. Host plants—among those the model plant Arabidopsis thaliana—have to endure invasion of second stage juveniles and the establishment of nematode feeding structures in the plant''s vascular cylinder. For induction of the specific feeding structures, the juveniles pierce one single plant cell with their stylet and inject secretions, thus triggering the formation of a syncytium by local cell walls dissolutions.1 Further, the central vacuole of the syncytial cells disintegrates, nuclei enlarge and many organelles proliferate.1 About 24 hours after feeding site induction, the nematode juveniles start feeding in repetitive cycles.2 Syncytia have previously been described as strong sinks in the plant''s transport system.3 Thus, in the recent years several studies were carried out to discover solute supply to syncytial cells.4–7 To our present knowledge, syncytia are symplasmically isolated in the first days of nematode development. During that period, the nematodes depend on transport protein activity in the syncytia plasmamembranes. At later stages plasmodesmata appear to open to the phloem elements, facilitating symplasmic transport.Incoming solutes may either be taken up by the feeding nematode or are synthesised and catalysed by the syncytium''s metabolism. Due to the microscopically observable high density of the cytosol1 and the increased osmotic pressure,8 syncytia appear to accumulate high solute concentrations. In fact, significantly increased sucrose levels have been found in syncytia in comparison to non-infected control roots.7 In case of high sugar levels, plant cells generally synthesize starch in order to reduce emerging osmotic stress.9 The aim of the work of Hofmann et al.,10 was to elucidate if starch is utilised as carbohydrate storage in nematode-induced syncytia and to study expression of genes involved in starch metabolism with an emphasis on nematode development.Starch levels of nematode induced syncytia and roots of non-infected plants grown on sand/soil culture were measured by high performance liquid chromatography (HPLC). The results showed a high accumulation of starch in syncytia that was steadily decreasing during nematode development. The accumulation of starch could further be localised within syncytial cells by electron microscopy. Based on these results, we studied the gene expression of the starch metabolic pathway by Affymetrix gene chip analysis. About half of the 56 involved genes were significantly upregulated in syncytia compared to the control and only two genes were significantly downregulated. Thus, the high induction of the gene expression is consistent with the high starch accumulation. Finally, we applied an Arabidopsis mutant line lacking starch synthase I expression that has been described previously.11 Starch synthase I was the second highest upregulated gene in syncytia. It catalyses the linkage of ADP-glucose to the non-reducing end of an a-glucan, forming the linear glucose chains of amylopectin. In a nematode infection assay we were able to prove the significant importance of the gene for nematode development.With the presented results, we can unambiguously prove the accumulation of starch and the induction of the gene expression of the starch metabolic pathway in nematode-induced syncytia. The primary question however is: why do syncytia accumulate soluble sugars and starch although their metabolism is highly induced and nematodes withdraw solutes during continuously repeating feeding cycles?One explanation may be found where least expected—in nematode feeding. It is the feeding activity that induced solute import mechanisms into syncytia resulting in a newly formed sink tissue. However, during moulting events to the third, the fourth juvenile stage and to the adult stage nematodes interrupt feeding for about 20 hours.2 During this period sugar supply mechanisms will most probably not be altered thus leading to increasing levels of sugars in the syncytium. Starch may serve as short-term carbohydrate buffering sugar excess. Further, starch may serve as long-term carbohydrate storage during nematode development. In the early stages of juvenile development nematodes withdraw considerably small quantities (about 0,8-times the syncytium volume a day).12 At later stages, nutrient demand increases so that adult fertilised females require 4-times the syncytium volume per day in order to accomplish egg production.12 Thus, excessive sugar supply in the first days may be accumulated as starch that gets degraded at later stages when more energy is required from the parasites. Consequently, starch reserve serves as both short-term and long-term carbohydrate storage in nematode-induced syncytia in order to buffer changing feeding pattern of the parasites.? Open in a separate windowFigure 1Arabidopsis wild-type Columbia-0 plants were grown in sand/soil culture. Nematode-induced syncytia and non-infected control roots were harvested at 10, 15 and 20 days after inoculation (dai) and starch content was measured as glucose (Glc) equivalents. Values are means ± SE, n = 3. Different letters indicate significant variations (p < 0.05). © ASPBOpen in a separate windowFigure 2Transmission electron microscope picture of a cross-section of a syncytium associated with female fourth stage juvenile (H. schachtii) induced in roots of Arabidopsis. Bar = 2 µm. S, syncytium; Se, sieve tube; arrow, plastid; asterisk, starch granule. © ASPB 相似文献
6.
Göke A Göke R Knolle A Trusheim H Schmidt H Wilmen A Carmody R Göke B Chen YH 《Biochemical and biophysical research communications》2002,297(1):78-82
To elucidate the molecular mechanisms of cell death, we have cloned a new gene, designated death-upregulated gene (DUG), from rat insulinoma cells. DUG is constitutively expressed at very low levels in normal cells but is dramatically upregulated in apoptotic cells following serum/glucose starvation or death receptor ligation by Fas ligand. The DUG mRNA is present in two splicing forms: a long form that encodes a protein of 469 amino acids and a short form that gives rise to a polypeptide of 432 amino acids. The predicted DUG protein sequence contains two putative nuclear localization signals and multiple phosphorylation sites for protein kinases and two conserved MA3 domains. Importantly, DUG is homologous to eukaryotic translation initiation factor (eIF) 4G and binds to eIF4A presumably through MA3 domains. Upon transfection, DUG inhibits both intrinsic and extrinsic pathways of apoptosis. Thus, DUG is a novel homologue of eIF4G that regulates apoptosis. 相似文献
7.
Bellaire BA Carmody J Braud J Gossett DR Banks SW Lucas MC Fowler TE 《Free radical research》2000,33(5):531-545
The role of abscisic acid (ABA) in the signal transduction pathway associated with NaCl-induced up-regulation of antioxidant enzyme activity was examined in a NaCl-tolerant cotton callus cell line treated with NaCl, ABA, paraquat, or H2O2 in the presence and absence or fluridone, an inhibitor of terpene, and therefore, ABA synthesis. Treatment with NaCl resulted in a rapid increase (within 30 minutes) in the ABA levels of the callus tissue, and the NaCl, ABA, and paraquat treatments induced rapid increases in the activities of superoxide dismutase, catalase, peroxidase, and glutathione reductase. Pre-treatment with fluridone significantly suppressed the NaCl-induced increases, but only slightly delayed the increases in tissue subjected to exogenous ABA treatment. This implies that ABA is involved in the signal transduction pathway associated with the NaCl-induced up-regulation of these antioxidant enzymes. Pre-treatment with fluridone had no effect on the paraquat-induced increases, suggesting that these enzymes can also be up-regulated by a pathway other than the one mediated by ABA. Both the NaCl and paraquat treatments produced significant increases in the superoxide levels within the callus, but the increase resulting from the paraquat treatment was significantly higher than the increase resulting from the NaCl treatment. These data suggest that NaCl stress results in the production of reactive oxygen intermediates (ROI) which signals the induction of an ABA-dependent signaling pathway. The production of very high levels of ROI, such as those that occur with paraquat treatment or perhaps during periods of prolonged or extreme stress, may induce an ABA-independent signaling pathway. 相似文献
8.
David A. Geier Thomas Carmody Janet K. Kern Paul G. King Mark R. Geier 《Biometals》2011,24(2):215-224
Previous studies noted specific changes in urinary porphyrin excretion patterns associated with exposure to mercury (Hg) in animals and humans. In our study, urinary porphyrin concentrations were examined in normal children 8–18 years-old from a reanalysis of data provided from a randomized, prospective clinical trial that was designed to evaluate the potential health consequences of prolonged exposure to Hg from dental amalgam fillings (the parent study). Our analysis examined dose-dependent correlations between increasing Hg exposure from dental amalgams and urinary porphyrins utilizing statistical models with adjustments for the baseline level (i.e. study year 1) of the following variables: urinary Hg, each urinary porphyrin measure, gender, race, and the level of lead (Pb) in each subject’s blood. Significant dose-dependent correlations between cumulative exposure to Hg from dental amalgams and urinary porphyrins associated with Hg body-burden (pentacarboxyporphyrin, precoproporphyrin, and coproporphyrin) were observed. Overall, 5–10% increases in Hg-associated porphyrins for subjects receiving an average number of dental amalgam fillings in comparison to subjects receiving only composite fillings were observed over the 8-year course of the study. In contrast, no significant correlations were observed between cumulative exposure to Hg from dental amalgams and urinary porphyrins not associated with Hg body-burden (uroporphyrin, heptacarboxyporphyrin, and hexacarboxyporphyrin). In conclusion, our study, in contrast to the no-effect results published from the parent study, further establishes the sensitivity and specificity of specific urinary porphyrins as a biomarker for low-level Hg body-burden, and also reveals that dental amalgams are a significant chronic contributor to Hg body-burden. 相似文献
9.
10.
Jonathan O Speare Danielle K Offerdahl Aaron Hasenkrug Aaron B Carmody Gerald S Baron 《The EMBO journal》2010,29(4):782-794
Prion diseases differ from other amyloid‐associated protein misfolding diseases (e.g. Alzheimer's) because they are naturally transmitted between individuals and involve spread of protein aggregation between tissues. Factors underlying these features of prion diseases are poorly understood. Of all protein misfolding disorders, only prion diseases involve the misfolding of a glycosylphosphatidylinositol (GPI)‐anchored protein. To test whether GPI anchoring can modulate the propagation and spread of protein aggregates, a GPI‐anchored version of the amyloidogenic yeast protein Sup35NM (Sup35GPI) was expressed in neuronal cells. Treatment of cells with Sup35NM fibrils induced the GPI anchor‐dependent formation of self‐propagating, detergent‐insoluble, protease‐resistant, prion‐like aggregates of Sup35GPI. Live‐cell imaging showed intercellular spread of Sup35GPI aggregation to involve contact between aggregate‐positive and aggregate‐negative cells and transfer of Sup35GPI from aggregate‐positive cells. These data demonstrate GPI anchoring facilitates the propagation and spread of protein aggregation and thus may enhance the transmissibility and pathogenesis of prion diseases relative to other protein misfolding diseases. 相似文献