首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2008年   3篇
  2003年   1篇
  1978年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
The fine structure of the regular arrays of subunits seen on both plasmalemma fracture faces in resting and starved Saccharomyces cerevisiae (baker's yeast) has been compared using different freeze-fracture replication methods. Freeze-cleaving was carried out at 173 degrees, 133 degrees, and 108 degrees K under a vacuum of 2 X 10(-7) torr (2.6 X 10(- 7)mbar) or under liquid nitrogen at atmosphereic pressure. Independent of the preparation conditions (fracturing temperature, and whether cleaved under vacuum or liquid nitrogen), resting and starved yeast show a significant difference in the morphology of the subunits forming the regular arrays. The regularly arranged particles of the P face of the plasmalemma of starved yeast have a clear craterlike structure which has previously been reported to be demonstrated only by freeze-etching at very low temperatures in ultrahigh vacuum. A complementary structure is seen on the plasmalemma E face. Prolonged exposures of fracture faces under the protection of liquid nitrogen-cooled shrouds have shown that, because of the consequent drastic reduction of condensable gases in the specimen area, no detectable condensation contamination of exposed fracture faces occurs within 15 min at a specimen temperature of 108 degrees K. This shows that a complicated ultrahigh vacuum technology is not required for high resolution freeze- etching.  相似文献   
2.
Infections outside of the intestinal tract due to pathogenic strains of Escherichia coli result in significant morbidity, mortality and increased healthcare costs. The ability of these strains to cause both mucosal and systemic infections, as well as recurrent infections due to the same (homologous) strain suggests the hypothesis that strains of E. coli that cause infection outside of the intestinal tract possess proteases that are capable of cleaving IgA1, IgA2, sIgA or IgG. To test this hypothesis the ability of eight E. coli strains, isolated from sites outside of the urinary tract and 14 homologous and 11 heterologous strains of E. coli that were isolated from women with recurrent UTI, to cleave IgA1, IgA2, sIgA or IgG was evaluated. Our experimental design allowed for detection of cell-associated and secreted immunoglobulin proteases in both log and stationary phase. Surprisingly, none of these 33 human clinical isolates when grown in iron depleted Luria-Bertani medium or human urine were able to degrade the immunoglobulins assessed. Despite previous studies suggesting otherwise, the findings from this study support the concept that strains of E. coli that cause infection outside of the intestinal tract do not possess proteases that cleave the human immunoglobulins IgA1, IgA2, sIgA or IgG.  相似文献   
3.
4.
Gram-negative enteric bacilli are agents of life-threatening pneumonia. The role of the bacterial capsule and O-antigen moiety of lipopolysaccharide in the pathogenesis of Gram-negative pneumonia was assessed. In a rat model of pneumonia the LD(50) of a wild-type extraintestinal pathogenic Escherichia coli strain (CP9) was significantly less than its isogenic derivatives deficient in capsule (CP9.137), O-antigen (CP921) or both capsule and O-antigen (CP923) (P< or =0.003). Studies using complement depleted or neutropenic animals established that both neutrophils and complement are important for the pulmonary clearance of E. coli. Data from these studies also support that capsule and O-antigen serve, at least in part, to counter the complement and neutrophil components of the pulmonary host defense response. Lastly, the contribution of E. coli versus neutrophils in causing lung injury was examined. Findings suggest that E. coli virulence factors and/or non-neutrophil host factors are more important mediators of lung injury than neutrophils. These findings extend our understanding of Gram-negative pneumonia and have treatment implications.  相似文献   
5.
This paper demonstrates the application of a design tool called BioTRIZ. Its developers claim that it can be used to access biological strategies for solving engineering problems. Our aim is to design a roof for hot climates that gets free cooling through radiant coupling with the sky. The insulation in a standard roof stops the sun and convection from warming the thermal mass. But it also restricts the mass's longwave view of the cool sky. Different solutions to this conflict are offered by BioTRIZ. The chosen solution is to replace the standard insulation component with an open cell honeycomb. The vertical cells would allow longwave radiation to pass, while arresting convection. The solutions offered by BioTRIZ's technological counterpart include no such changes in structure. It is estimated that the thermal mass in the biomimetic roof would remain on average 4.5℃ cooler than in a standard roof over a year in Riyadh, Saudi Arabia.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号