首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  2018年   1篇
  2014年   1篇
  2012年   1篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2006年   3篇
  2005年   1篇
  2003年   3篇
  1991年   1篇
  1964年   1篇
排序方式: 共有18条查询结果,搜索用时 31 毫秒
1.
Improvement of physical-chemical soil quality is a key step for carrying out revegetation programs of degraded lands in Mediterranean semiarid areas. Organic residue addition may restore the quality of these areas. A field experiment was conducted in a silt-loam soil (Typic Petrocalcid) from a degraded semiarid Mediterranean area to evaluate the effect of the addition of a composted urban residue on soil aggregate stability, bulk density and chemical properties and on the establishment of Pistacia lentiscus and Retama sphaerocarpa seedlings. The composted residue was applied at a rate of 6.7 kg m(-2) before planting. The nutrient content (NPK), total organic C and water soluble C were increased and bulk density was decreased, in the rhizosphere soil of both shrub species, by the composted residue. The addition of composted residue significantly increased the soil aggregate stability by about 22% for both shrub species. The beneficial effect of the composted residue on soil quality still persisted 18 months after addition. Eighteen months after planting, the addition of composted residue to soil had increased significantly the production of shoot biomass by P. lentiscus and R. sphaerocarpa, by about 160% and 320% respectively, compared to control values. Composted residue addition to soil can be considered an effective preparation method of a degraded area for carrying out successful revegetation programs with Mediterranean shrubs under semiarid conditions.  相似文献   
2.
The objective of this study was to compare the microbial community composition and biomass associated with the rhizosphere of a perennial gramineous species (Lygeum spartum L.) with that of an annual (Piptatherum miliaceum L.), both growing in semiarid mine tailings. We also established their relationship with the contents of potentially toxic metals as well as with indicators of soil quality. The total phospholipid fatty acid (PLFA) amount was significantly higher in the rhizosphere soil of the annual species than in the rhizosphere soil of the perennial species. The fungal/bacterial PLFA ratio was significantly greater in the perennial species compared to the annual species. The fatty acid 16:1ω5c, the fungal/bacterial PLFA ratio and monounsaturated/saturated PLFA ratio were correlated negatively with the soluble contents of toxic metals. The cyc/prec (cy17:0 + cy19:0/16:1ω7 + 18:1ω7) ratio was correlated positively with the soluble contents of Pb, Zn, Al, Ni, Cd, and Cu. The results of the PLFA analysis for profiling microbial communities and their stress status of both the plant species indicate that perennial and annual gramineous species appear equally suitable for use in programmes of revegetation of semiarid mine tailings.  相似文献   
3.
A field experiment was carried out to assess the effectiveness of the addition of sugar beet, rock phosphate, and Aspergillus niger directly into the planting hole, and the mycorrhizal inoculation of seedlings with Scleroderma verrucosum, for promotion of plant growth of Cistus albidus L. and Quercus coccifera L. and enhancement of soil physicochemical, biochemical, and biological properties, in a degraded semiarid Mediterranean area. One year after planting, the available phosphorus content in the amended soils of both species was about fourfold higher than in the nonamended soil. Amendment addition increased the aggregate stability of the rhizosphere of C. albidus (by 56% with respect to control soil) while the mycorrhizal inoculation increased only the aggregate stability of the rhizosphere of Q. coccifera (by 13% with respect to control soil). Biomass C content and enzyme activities (dehydrogenase, urease, protease-BAA, acid phosphatase, and -glucosidase) of the rhizosphere of C. albidus were increased by amendment addition but not by mycorrhizal inoculation. Both treatments increased enzyme activities of the rhizosphere of Q. coccifera. The mycorrhizal inoculation of the seedlings with S. verrucosum was the most effective treatment for stimulating the growth of C. albidus (by 469% with respect to control plants) and Q. coccifera (by 74% with respect to control plants). The combined treatment, involving mycorrhizal inoculation of seedlings and addition of the amendment directly into soil, had no additive effect on the growth of either shrub species.  相似文献   
4.
We have performed a very extensive investigation of chromatin folding in different buffers over a wide range of ionic conditions similar to those found in eukaryotic cells. Our results show that in the presence of physiological concentrations of monovalent cations and/or low concentrations of divalent cations, small chicken erythrocyte chromatin fragments and chromatin from HeLa cells observed by transmission electron microscopy (TEM) show a compact folding, forming circular bodies of approximately 35 nm in diameter that were found previously in our laboratory in studies performed under very limited conditions. Since TEM images are obtained with dehydrated samples, we have performed atomic force microscopy (AFM) experiments to analyze chromatin structure in the presence of solutions containing different cation concentrations. The highly compact circular structures (in which individual nucleosomes are not visible as separated units) produced by small chromatin fragments in interphase ionic conditions observed by AFM are equivalent to the structures observed by TEM with chromatin samples prepared under the same ionic conditions. We have also carried out experiments of sedimentation and trypsin digestion of chromatin fragments; the results obtained confirm our AFM observations. Our results suggest that the compaction of bulk interphase chromatin in solution at room temperature is considerably higher than that generally considered in current literature. The dense chromatin folding observed in this study is consistent with the requirement of compact chromatin structures as starting elements for the building of metaphase chromosomes, but poses a difficult physical problem for gene expression during interphase.  相似文献   
5.
6.
In this study, we tested whether communities of arbuscular mycorrhizal (AM) fungi associated with roots of plant species forming vegetative cover as well as some soil parameters (amounts of phosphatase and glomalin-related soil protein, microbial biomass C and N concentrations, amount of P available, and aggregate stability) were affected by different amounts (control, 6.5 kg m−2, 13.0 kg m−2, 19.5 kg m−2, and 26.0 kg m−2) of an urban refuse (UR) 19 years after its application to a highly eroded, semiarid soil. The AM fungal small-subunit (SSU) rRNA genes were subjected to PCR, cloning, single-stranded conformation polymorphism analysis, sequencing, and phylogenetic analyses. One hundred sixteen SSU rRNA sequences were analyzed, and nine AM fungal types belonging to Glomus groups A and B were identified: three of them were present in all the plots that had received UR, and six appeared to be specific to certain amendment doses. The community of AM fungi was more diverse after the application of the different amounts of UR. The values of all the soil parameters analyzed increased proportionally with the dose of amendment applied. In conclusion, the application of organic wastes enhanced soil microbial activities and aggregation, and the AM fungal diversity increased, particularly when a moderate dose of UR (13.0 kg m−2) was applied.The semiarid Mediterranean areas of Southeastern Spain are affected by environmental degradation and erosive processes due to the fact that they are characterized by a set of climatic conditions that includes irregular and scarce rainfall and long, dry, and hot summers. Under these conditions, the soil organic matter content decreases, and the availability of nutrients and water for plants is reduced. Consequently, soil productivity decreases, levels of below-ground microbially diverse populations decline, and the water deficit limits plant growth so that the vegetation cover of natural soils cannot be sustained. Therefore, the development of revegetation techniques to reduce erosion, to remediate the effects of degradation, and, thus, to allow the restoration of biodiversity is needed. It was previously demonstrated that the application of organic amendments, such as urban refuse (UR), to soil increases the organic matter content of soil and improves the quality and productivity of degraded soils (17, 44, 57). Also, it was previously shown that the organic residues yield an improvement in levels of microbially diverse populations in the soil (43).A substantial part of the soil microbial communities belongs to the arbuscular mycorrhizal (AM) fungi, an ancient group of fungi belonging to the phylum Glomeromycota (49), which form mutualistic associations with the roots of the majority of land plants. These fungi have a variety of beneficial effects on their host plants, such as increasing the uptake of mineral nutrients, particularly phosphorus and nitrogen (41, 52); reduction of pathogen infections (7); improvement of water relations (12) and soil stability (58); and the limitation of heavy metal uptake (34). It is evident that AM fungi are an important factor contributing to the maintenance of terrestrial ecosystem functioning. Studies have shown that the diversity of AM fungal populations in the soil can affect plant diversity and productivity and ecosystem stability (62). Therefore, information on the species composition of the AM fungal community in roots is important for an understanding of mycorrhizal function as well as for the effective management and preservation of the diversity of AM fungal populations in ecological field studies.Thanks to advances in molecular techniques in recent years, it is possible to apply PCR-based molecular methods in order to analyze the diversity of AM fungi colonizing the roots of an individual plant at any given time. Traditional identification based on spore morphology is often problematic, and the abundance of spores in the soil may not accurately reflect AM fungal community composition and dynamics (8). The single-stranded conformation polymorphism (SSCP) approach is a very sensitive and reproducible technique for analyzing the sequence diversity of AM fungi within roots (30). This method is based on nucleotide differences between homologous sequence strands, which are detected by electrophoresis of single-stranded DNA under nondenaturing conditions (38).It is known that the application of organic amendments can have a positive effect on the proliferation of natural AM fungi in crop systems (20, 26). The stimulatory effects of the addition of organic matter on the development of AM fungi could be related to an improvement in the extensive network of AM fungal mycelium in the soil. In this way, the colonized plants are able to effectively exploit nutrients and water from soil (52). Moreover, AM fungi are able to exploit nutrients released by the mineralization of organic matter due to the activities of mineralizing microorganisms (28). However, there are many previous reports that showed a strong negative impact on the presence of AM fungal populations and mycorrhizal colonization when composted urban waste was added to the soil (19, 46). Also, research using trap cultures of host plants showed a decrease in the level of diversity of AM fungal species in soils amended with sewage sludge (25, 61).In a previous study carried out in 1992 at the site that is also the subject of the current work, Roldán and Albaladejo (43) found that the application of UR decreased levels of AM fungal populations in the first year after amendment; however, they observed an increase in levels of these populations 3 years after the addition. We hypothesized that after a long period of time, the application of UR could alter the diversity of AM fungal populations in a highly eroded, semiarid soil and that this effect could be influenced by the refuse application rate. In order to verify this hypothesis, we studied the diversity of the AM fungi associated with the roots of plant species forming the vegetative cover of five plots that received different amounts of UR 19 years after the amendment. Also, we determined whether there was an improvement in soil quality parameters related to soil microbial activity.  相似文献   
7.
Arbuscular mycorrhizal (AM) symbiosis and plant-growth-promoting rhizobacterium (PGPR) can alleviate the effects of water stress in plants, but it is unknown whether these benefits can be maintained at elevated CO2. Therefore, we carried out a study where seedlings of Lactuca sativa were inoculated with the AM fungus (AMF) Glomus intraradices N.C. Schenk & G.S. Sm. or the PGPR Pseudomonas mendocina Palleroni and subjected to two levels of watering and two levels of atmospheric CO2 to ascertain their effects on plant physiological parameters and gene expression of one PIP aquaporin in roots. The inoculation with PGPR produced the greatest growth in lettuce plants under all assayed treatments as well as the highest foliar potassium concentration and leaf relative water content under elevated [CO2] and drought. However, under such conditions, the PIP2 gene expression remained almost unchanged. G. intraradices increased significantly the AMF colonization, foliar phosphorus concentration and leaf relative water content in plants grown under drought and elevated [CO2]. Under drought and elevated [CO2], the plants inoculated with G. intraradices showed enhanced expression of the PIP2 gene as compared to P. mendocina or control plants. Our results suggest that both microbial inoculation treatments could help to alleviate drought at elevated [CO2]. However, the PIP2 gene expression was increased only by the AMF but not by the PGPR under these conditions.  相似文献   
8.

Introduction

The inflammatory reflex is a physiological mechanism through which the nervous system maintains immunologic homeostasis by modulating innate and adaptive immunity. We postulated that the reflex might be harnessed therapeutically to reduce pathological levels of inflammation in rheumatoid arthritis by activating its prototypical efferent arm, termed the cholinergic anti-inflammatory pathway. To explore this, we determined whether electrical neurostimulation of the cholinergic anti-inflammatory pathway reduced disease severity in the collagen-induced arthritis model.

Methods

Rats implanted with vagus nerve cuff electrodes had collagen-induced arthritis induced and were followed for 15 days. Animals underwent active or sham electrical stimulation once daily from day 9 through the conclusion of the study. Joint swelling, histology, and levels of cytokines and bone metabolism mediators were assessed.

Results

Compared with sham treatment, active neurostimulation of the cholinergic anti-inflammatory pathway resulted in a 52% reduction in ankle diameter (p = 0.02), a 57% reduction in ankle diameter (area under curve; p = 0.02) and 46% reduction overall histological arthritis score (p = 0.01) with significant improvements in inflammation, pannus formation, cartilage destruction, and bone erosion (p = 0.02), accompanied by numerical reductions in systemic cytokine levels, not reaching statistical significance. Bone erosion improvement was associated with a decrease in serum levels of receptor activator of NF-κB ligand (RANKL) from 132±13 to 6±2 pg/mL (mean±SEM, p = 0.01).

Conclusions

The severity of collagen-induced arthritis is reduced by neurostimulation of the cholinergic anti-inflammatory pathway delivered using an implanted electrical vagus nerve stimulation cuff electrode, and supports the rationale for testing this approach in human inflammatory disorders.  相似文献   
9.
Seasonal changes in reproductive activity in the adult male vizcacha (Lagostomus maximus maximus), a South American rodent, were investigated. Monthly, for 2 yr, the animals were killed and decapitated during the night near their burrows in the vicinity of San Luis, Argentina. The testes, epididymides, and pineal glands were removed and used for biochemical and structural studies. Significant changes associated with seasonal cycles were found. 1) In July-August (winter in South America), a short hibernal period of sexual quiescence, decline in testicular and epididymal weights, arrest of spermatogenesis, and decrease of serum testosterone were observed. The gonads regressed during this period, with regression most pronounced in August. 2) During September-November (spring), a recovery period--without arrest of spermatogenesis--was observed, with significant expression of gonadal activity during April-May (autumn). In this season, gonadal weight was increased and spermatogenesis was complete. These results indicate an increase in sexual activity as well as in the ability to secrete testosterone. A gradual reduction of testicular activity appeared in June-July (early winter). Conversely, in this period, the pineal hydroxyindole-O-methyl transferase activity decreased in contrast to the highest values observed in winter. Our findings indicate that the male adult vizcacha under natural conditions exhibits an annual reproductive cycle. A possible relationship between increased pineal activity and gonadal regression is also suggested.  相似文献   
10.
We studied the effect of inoculation with a mixture of three arbuscular mycorrhizal (AM) fungi (Glomus intraradices Schenck & Smith, Glomus deserticola (Trappe, Bloss. & Menge) and Glomus mosseae (Nicol & Gerd.) Gerd. & Trappe) and addition of a composted organic residue on plant growth, nutrient uptake, mycorrhizal colonisation and superoxide dismutase (SOD, EC 1.15.1.1) and total peroxidase (POX, EC 1.11.1.7) activities in shoots of Juniperus oxycedrus seedlings after well-watered, drought and recovery periods. The mycorrhizal inoculation and composted residue addition significantly increased the growth, foliar nutrients (N, P, K) and shoot water content of the plants, independent of the water regime. POX activity in control plants increased during drought (about 250% higher than under well-watered conditions) and returned to initial levels after re-watering. The seedlings inoculated with AM fungi showed the highest values of POX activity, followed by the plants grown in the amended soil, which varied little during the drought and recovery periods. Drought decreased the SOD activity in shoots of both J. oxycedrus seedlings inoculated with AM fungi and those grown with composted residue, but did not affect that of control plants. After re-watering, the SOD activity in mycorrhizal or residue-amended plants increased, showing values similar to control plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号