首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   2篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2012年   2篇
  2011年   2篇
  2010年   3篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1990年   1篇
  1986年   1篇
  1981年   1篇
  1954年   1篇
  1953年   2篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
Cell surface pili are polymeric protein assemblies that enable bacteria to adhere to surfaces and to specific host tissues. The pili expressed by Gram-positive bacteria constitute a unique paradigm in which sortase-mediated covalent linkages join successive pilin subunits like beads on a string. These pili are formed from two or three distinct types of pilin subunit, typically encoded in small gene clusters, often with their cognate sortases. In Group A streptococci (GAS), a major pilin forms the polymeric backbone, whereas two minor pilins are located at the tip and the base. Here, we report the 1.9-Å resolution crystal structure of the GAS basal pilin FctB, revealing an immunoglobulin (Ig)-like N-terminal domain with an extended proline-rich tail. Unexpected structural homology between the FctB Ig-like domain and the N-terminal domain of the GAS shaft pilin helps explain the use of the same sortase for polymerization of the shaft and its attachment to FctB. It also enabled the identification, from mass spectral data, of the lysine residue involved in the covalent linkage of FctB to the shaft. The proline-rich tail forms a polyproline-II helix that appears to be a common feature of the basal (cell wall-anchoring) pilins. Together, our results indicate distinct structural elements in the pilin proteins that play a role in selecting for the appropriate sortases and thereby help orchestrate the ordered assembly of the pilus.  相似文献   
2.
Insect seed predation may vary depending on seed production. The present study considers the hypothesis that the rates of seed predation tend to be smaller in years of higher fruit production. Thus, we monitored the production of fruits and predation of seeds of the palm Syagrus romanzoffiana over 2?years in the Atlantic Forest (Parque Municipal da Lagoa do Peri, Florianópolis, SC, Brazil), between July 2006 and June 2008. Plots of 0.25?m2 were fitted under 20 mother plants and fruits were monthly collected for assessment of abundance and seed predation. There was variation in fruit production between the 2?years and among reproductive plants. Predation rates were high and occurred in the predispersal phase by the Curculionidae Revena rubiginosa Boheman, Anchylorhynchus aegrotus Fahraeus, and Anchylorhynchus variabilis Gyllenhal. Seed predation by these species of Anchylorhynchus is first registered in the present study. In average, about 60% of the seeds monthly produced in the population tend to escape insect predation in year of high or low production, becoming available for recruitment. The predation rate was not related to the amount of fruits produced per reproductive plant. Also, different than expected, there was a positive relation between the rates of seed predation and the total of fruits produced monthly on the plots. Thus, no evidence for the satiation of insect seed predators was found in this study with S. romanzoffiana.  相似文献   
3.

Background

In mammals succinic semialdehyde dehydrogenase (SSADH) plays an essential role in the metabolism of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) to succinic acid (SA). Deficiency of SSADH in humans results in elevated levels of GABA and γ-Hydroxybutyric acid (GHB), which leads to psychomotor retardation, muscular hypotonia, non-progressive ataxia and seizures. In Escherichia coli, two genetically distinct forms of SSADHs had been described that are essential for preventing accumulation of toxic levels of succinic semialdehyde (SSA) in cells.

Methodology/Principal Findings

Here we structurally characterise SSADH encoded by the E coli gabD gene by X-ray crystallographic studies and compare these data with the structure of human SSADH. In the E. coli SSADH structure, electron density for the complete NADP+ cofactor in the binding sites is clearly evident; these data in particular revealing how the nicotinamide ring of the cofactor is positioned in each active site.

Conclusions/Significance

Our structural data suggest that a deletion of three amino acids in E. coli SSADH permits this enzyme to use NADP+, whereas in contrast the human enzyme utilises NAD+. Furthermore, the structure of E. coli SSADH gives additional insight into human mutations that result in disease.  相似文献   
4.
5.
Membrane attack complex/perforin-like (MACPF) proteins comprise the largest superfamily of pore-forming proteins, playing crucial roles in immunity and pathogenesis. Soluble monomers assemble into large transmembrane pores via conformational transitions that remain to be structurally and mechanistically characterised. Here we present an 11 Å resolution cryo-electron microscopy (cryo-EM) structure of the two-part, fungal toxin Pleurotolysin (Ply), together with crystal structures of both components (the lipid binding PlyA protein and the pore-forming MACPF component PlyB). These data reveal a 13-fold pore 80 Å in diameter and 100 Å in height, with each subunit comprised of a PlyB molecule atop a membrane bound dimer of PlyA. The resolution of the EM map, together with biophysical and computational experiments, allowed confident assignment of subdomains in a MACPF pore assembly. The major conformational changes in PlyB are a ∼70° opening of the bent and distorted central β-sheet of the MACPF domain, accompanied by extrusion and refolding of two α-helical regions into transmembrane β-hairpins (TMH1 and TMH2). We determined the structures of three different disulphide bond-trapped prepore intermediates. Analysis of these data by molecular modelling and flexible fitting allows us to generate a potential trajectory of β-sheet unbending. The results suggest that MACPF conformational change is triggered through disruption of the interface between a conserved helix-turn-helix motif and the top of TMH2. Following their release we propose that the transmembrane regions assemble into β-hairpins via top down zippering of backbone hydrogen bonds to form the membrane-inserted β-barrel. The intermediate structures of the MACPF domain during refolding into the β-barrel pore establish a structural paradigm for the transition from soluble monomer to pore, which may be conserved across the whole superfamily. The TMH2 region is critical for the release of both TMH clusters, suggesting why this region is targeted by endogenous inhibitors of MACPF function.  相似文献   
6.
There has been considerable interest recently in the application of bagging in the classification of both gene-expression data and protein-abundance mass spectrometry data. The approach is often justified by the improvement it produces on the performance of unstable, overfitting classification rules under small-sample situations. However, the question of real practical interest is whether the ensemble scheme will improve performance of those classifiers sufficiently to beat the performance of single stable, nonoverfitting classifiers, in the case of small-sample genomic and proteomic data sets. To investigate that question, we conducted a detailed empirical study, using publicly-available data sets from published genomic and proteomic studies. We observed that, under t-test and RELIEF filter-based feature selection, bagging generally does a good job of improving the performance of unstable, overfitting classifiers, such as CART decision trees and neural networks, but that improvement was not sufficient to beat the performance of single stable, nonoverfitting classifiers, such as diagonal and plain linear discriminant analysis, or 3-nearest neighbors. Furthermore, as expected, the ensemble method did not improve the performance of these classifiers significantly. Representative experimental results are presented and discussed in this work.  相似文献   
7.
Cell migration and invasion requires the precise temporal and spatial orchestration of a variety of biological processes. Filaments of polymerized actin are critical players in these diverse processes, including the regulation of cell anchorage points (both cell-cell and cell-extracellular matrix), the uptake and delivery of molecules via endocytic pathways and the generation of force for both membrane protrusion and retraction. How the actin filaments are specialized for each of these discrete functions is yet to be comprehensively elucidated. The cytoskeletal tropomyosins are a family of actin associating proteins that form head-to-tail polymers which lay in the major groove of polymerized actin filaments. In the present review we summarize the emerging isoform-specific functions of tropomyosins in cell migration and invasion and discuss their potential roles in the specialization of actin filaments for the diverse cellular processes that together regulate cell migration and invasion.Key words: tropomyosin, actin, migration, invasion, cytoskeleton, actin dynamics, adhesionActin is the most abundant protein in eukaryotic cells and is critical for maintaining structural integrity. The polymerization of globular (G)-actin monomers forms actin filaments (F-actin),1 which play a role in diverse and complex cellular functions including intercellular transport of organelles and vesicles,2,3 cytokinesis,4 apoptosis5 and cell motility.6 Intricate details describing the molecular scale interactions between regulatory proteins and actin have been extensively investigated but the mechanistic control of diverse actin filament functions remain largely unclear. Recent improvements in analysis techniques7 and the use of physiologically relevant models of 3D cell culturing8 have now begun to reveal mechanisms of actin cytoskeleton regulation. Accruing evidence suggests that the actin decorating protein tropomyosin is a key regulator of actin filament specialization. Of particular interest is the impact that tropomyosin regulation has on actin filament activity during cell migration and invasion that underpins immunological cell homing, development, wound healing and metastasis.  相似文献   
8.
Staphylococcus aureus is a significant human pathogen. Among its large repertoire of secreted toxins is a group of staphylococcal superantigen-like proteins (SSLs). These are homologous to superantigens but do not have the same activity. SSL5 is shown here to bind to human granulocytes and to the cell surface receptors for human IgA (FcαRI) and P-selectin [P-selectin glycoprotein ligand-1 (PSGL-1)] in a sialic acid (Sia)-dependent manner. Co-crystallization of SSL5 with the tetrasaccharide sialyl Lewis X (sLeX), a key determinant of PSGL-1 binding to P-selectin, led to crystal structures of the SSL5–sLeX complex at resolutions of 1.65 and 2.75 Å for crystals at two pH values. In both structures, sLeX bound to a specific site on the surface of the C-terminal domain of SSL5 in a conformation identical with that bound by P-selectin. Conservation of the key carbohydrate binding residues indicates that this ability to bind human glycans is shared by a substantial subgroup of the SSLs, including SSL2, SSL3, SSL4, SSL5, SSL6, and SSL11. This indicates that the ability to target human glycans is an important property of this group of toxins. Structural comparisons also showed that the Sia binding site in SSL5 contains a substructure that is shared by other Sia binding proteins from bacteria as well as viruses and represents a common binding motif.  相似文献   
9.
Plasminogen is the proenzyme precursor of the primary fibrinolytic protease plasmin. Circulating plasminogen, which comprises a Pan-apple (PAp) domain, five kringle domains (KR1-5), and a serine protease (SP) domain, adopts a closed, activation-resistant conformation. The kringle domains mediate interactions with fibrin clots and cell-surface receptors. These interactions trigger plasminogen to adopt an open form that can be cleaved and converted to plasmin by tissue-type and urokinase-type plasminogen activators. Here, the structure of closed plasminogen reveals that the PAp and SP domains, together with chloride ions, maintain the closed conformation through interactions with the kringle array. Differences in glycosylation alter the position of KR3, although in all structures the loop cleaved by plasminogen activators is inaccessible. The ligand-binding site of KR1 is exposed and likely governs proenzyme recruitment to targets. Furthermore, analysis of our structure suggests that KR5 peeling away from the PAp domain may initiate plasminogen conformational change.  相似文献   
10.
LEUNGTM  PLLIM 《Cell research》1990,1(2):217-221
One of the earliest events leading to cell activation and growth is the hydrolysis of inositol phospholipids producing various membrane signals induced by an interaction between growth factors or hormones with their respective receptors on the cell membrane [1].To demonstrate the mitogenic action of transferrin,our results show that an addition of transferrin to “serum-deprived” rat hepatoma cells produced a rapid but transient rise in inositol 1,4,5-trisphosphate(IP3) level,and at the same time,an increased intracellular Ca^2 activity and a cytoplasmic alkalinization were observed.These signal transductions further lend support to the mitogenic nature of transferrin.In addition,a possible link between the receptor-mediated endocytosis of transferrin with the generation of intracellular signals is discussed herewith.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号