首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   0篇
  2012年   5篇
  2011年   4篇
  2010年   1篇
  2007年   1篇
  2006年   1篇
  2005年   4篇
  2004年   4篇
  2003年   4篇
  1994年   1篇
  1977年   1篇
  1974年   2篇
  1970年   2篇
  1962年   2篇
  1958年   3篇
  1954年   1篇
  1953年   1篇
  1951年   2篇
  1948年   1篇
  1945年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
1.
The earlier inclusion of children into clinical trials has challenged toxicologists to develop nonclinical strategies to support these trials early in the drug development process, and the routine practise of global development strategies (i.e., concomitant development and filing in multiple geographical regions) adds another complication. Ideally, one would like to develop a stagey that would meet regulatory requirements from all regions. This presentation illustrated the challenges faced in developing a strategy regarding the need to perform a toxicity study in juvenile animals and the design of any necessary study that will receive global regulatory agreement.  相似文献   
2.
Helicobacter pylori causes an acute inflammatory response followed by chronic infection of the human gastric mucosa. Identification of the bacterial molecules endowed with a pro-inflammatory activity is essential to a molecular understanding of the pathogenesis of H. pylori associated diseases. The vacuolating cytotoxin A (VacA) induces mast cells to release pro-inflammatory cytokines. Here, we show that VacA activates the mast cell line RBL-2H3 by rapidly inducing an oscillation of the level of cytosolic calcium with exocytosis of secretory granules. Cytosolic calcium derives mainly from intracellular stores. VacA also stimulates a calcium-dependent production of pro-inflammatory cytokines, including tumour necrosis factor alpha (TNF-alpha). These observations indicate that VacA may act as a pro-inflammatory factor of H. pylori at very early stages of the innate immune response.  相似文献   
3.
BACKGROUND: Given the role of nutrition and body weight gain in normal development, pharmaceuticals intended to reduce appetite and promote weight loss will generate safety data that may be challenging to interpret. To aid with this, the effects of feed restriction and subsequent body weight reductions on embryo-fetal development were investigated in the rat. METHODS: Groups of 20 timed pregnant female Sprague-Dawley rats were offered Certified Rodent Diet 5002 either ad libitum or in restricted amounts of 20, 15, 10, and 7.5 g/day from Gestation Day (GD) 6-17. Clinical signs, body weights, and food consumption were recorded. Cesarean sections were performed on GD 21 and fetuses were sexed, weighed, and examined for external, visceral, and skeletal development. RESULTS: Mean maternal body weights at the end of the feed restriction period, GD 18, were reduced 0.87 x, 0.80 x, 0.69 x, and 0.63 x control mean in the 20, 15, 10, and 7.5 g/day groups, respectively. Mean body weight gains for the restriction period inclusive, GD 6-18, were 0.49 x and 0.24 x control at 10 and 7.5 g/day, respectively, and a mean body weight loss occurred at 10 and 7.5 g/day (0.95 x and 0.85 x mean GD 6 body weight, respectively). Fetal body weights were reduced 0.95 x, 0.93 x, 0.90 x, and 0.76 x control at 20, 15, 10, and 7.5 g/day, respectively. This resulted in a reduction in gravid uterine weight at 10 and 7.5 g/day. There were no external, visceral, or skeletal malformations attributed to feed restriction. There was an increase in the skeletal variation of wavy ribs and a decrease in ossification at 7.5 g/day. CONCLUSIONS: These data demonstrate that feed restriction-induced reductions in maternal gestational body weight gain of approximately 50% compared to ab lib fed rats only caused a reduction in fetal body weight. Even up to a 15% maternal gestational body weight loss had no effect on embryo viability in rats, but retarded fetal growth significantly enough to induce minor changes in skeletal development. There were no external, visceral, or skeletal malformations associated with any of the levels of maternal body weight reduction or loss.  相似文献   
4.
5.
6.
7.
8.
BACKGROUND: Appropriate maternal nutrition and body weight gain during pregnancy is well established as a major factor in healthy prenatal development in humans. Given the role of nutrition and body weight gain in normal development, pharmaceuticals intended to reduce appetite and promote weight loss will generate developmental toxicity data that may be challenging to interpret. To aid with this, the effects of feed restriction, and subsequent reduction in maternal body weight gain, on embryo-fetal development was investigated in the rabbit. METHODS: Groups of 15 pregnant New Zealand White rabbits were offered 150 (control), 110, 75, 55, 35, and 15 g feed/day from gestation day (GD) 7-19. Cesarean sections were carried out on GD 29 and fetuses were examined for external, visceral, and skeletal development. RESULTS: Maternal body weights at the end of the feed restriction period (GD 20) were 0.97, 0.98, 0.93, 0.94, and 0.86 x control for the 110, 75, 55, 35, and 15 g feed/day groups, respectively. Only at 15 g feed/day was there a net maternal body weight loss (the GD 20 body weight was 0.93 x the GD 6 body weight) at the end of the feed restriction period. Six does aborted in the 15 g feed/day group; there were no other abortions associated with feed restriction. Fetal body weight was significantly reduced at 75, 55, 35, and 15 g feed/day (0.95, 0.90, 0.86, and 0.84 x control, respectively). There were no external or visceral malformations or variations, and no skeletal malformations associated with feed restriction. The incidence of fetuses with sternebrae 5 or 6 unossified was increased at feed levels < or = 75 g/day. At a feed level of 35 g/day there was an increase in unossified metatarsals and metacarpals, and an increase in the number of fetuses with a reduced number of caudal vertebrae ossified. Although these findings were not increased at a feed level of 15 g/day, the lack of dose response was likely due to increased abortion and subsequent decrease in fetuses available for evaluation at 15 g feed/day. CONCLUSION: These data demonstrate that feed restriction to feed levels that produce substantial reductions in maternal body weight gain can result in developmental toxicity expressed by abortion, reduced fetal weight, and alterations in ossification. Abortion only occurred when feed was restricted to an amount that produced maternal body weight loss (15 g feed/day) whereas reduced fetal weight and increased incidence of fetuses with unossified sternebrae, metatarsals, metacarpals, or caudal vertebrae were noted at feed levels of < or = 75 g/day. There were no fetal malformations associated with feed restriction.  相似文献   
9.
BACKGROUND: Congenital membranous ventricular septal defects (VSD) have been shown to close during postnatal development in rats [Solomon et al., Teratology 55:185-194, 1997]. Although they may differ in size, spontaneous and treatment-related VSD are histologically similar; however, the postnatal fate of treatment-induced VSD is not known. The objective of this study was to determine if treatment-induced VSD persist throughout postnatal development. METHODS: Groups of 40 female rats were given oral doses of trimethadione (TMD) at 400 mg/kg/day (200 b.i.d.) or 600 mg/kg/day (300 b.i.d.) on Gestation Days (GD) 9 and 10. Twenty dams in each group were designated for Cesarean section and 20 were allowed to deliver and rear their offspring to Postnatal Day (PND) 21. The integrity of the ventricular septum was evaluated in fetuses (GD 21) and pups (PND 21). RESULTS: The incidence of membranous VSD was 0.6, 7.6, and 49.8% per litter in the Control, 400, and 600 mg/kg groups, respectively, on GD 21. Both the incidence and severity of VSD increased with dose. The VSD at 400 mg/kg were small in size and initially detected by the presence of blood flowing through the defect from the closed right ventricle. In the 600 mg/kg dose group, the VSD, although still membranous, were larger and more readily detected without the need to examine the blood flow. At 600 mg/kg, not only were the VSD larger than those in the Control or the 400 mg/kg group, 10.1% per litter of the affected fetuses had other vessel anomalies associated with the VSD, which were incompatible with pup survival. On PND 21, VSD was noted in 0.3, 0, and 6.4% per litter evaluated in the Control, 400, and 600 mg/kg groups, respectively. This demonstrates that the small, isolated treatment-related VSD can resolve postnatally; however, the closure of the larger or more severe VSD may be prolonged or may not occur at all. Although TMD exposure reduced group mean fetal weights at both dose levels, there was no difference between the mean weight of fetuses with VSD and those fetuses without VSD in the same group. CONCLUSION: Treatment-induced VSD close postnatally, and appears to be a delay in cardiac development not associated with fetal weight. The timing of closure and survivability during closure is dependent on the severity of the VSD. Further characterization of the two sizes of VSD may provide diagnostic clarity; however, the current data support the smaller VSD as a variation with no significant impact on viability and growth, and the more severe VSD to be a malformation.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号