首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   14篇
  国内免费   9篇
  2022年   2篇
  2021年   2篇
  2019年   1篇
  2018年   6篇
  2017年   3篇
  2016年   4篇
  2015年   14篇
  2014年   13篇
  2013年   26篇
  2012年   16篇
  2011年   13篇
  2010年   14篇
  2009年   8篇
  2008年   9篇
  2007年   6篇
  2006年   9篇
  2005年   5篇
  2004年   7篇
  2003年   4篇
  2002年   1篇
  2001年   5篇
  2000年   3篇
  1999年   6篇
  1998年   8篇
  1997年   6篇
  1996年   5篇
  1995年   3篇
  1994年   7篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1977年   4篇
  1955年   1篇
  1954年   2篇
排序方式: 共有238条查询结果,搜索用时 62 毫秒
1.
2.
Glycosaminoglycans isolated from native non-adhesive surfaces of both endothelial and mesothelial origin and from endothelial cells cultured in vitro were analyzed by electrophoresis and characterized by chemical and enzymatic breakdown. All the surfaces examined expose in vivo chondroitin 6-sulphate as the main glycosaminoglycan. Under in vitro culture, the exposure of chondroitin sulphate is reduced. Paper chromatography of hydrolysis products upon degradation by chondroitinase AC shows equal amounts of both 6- and 4-sulphated disaccharides. At the same time, the surfaces lose their non-adhesiveness to leukocytes. The addition of fibroblast growth factor to endothelial monolayers restores both non-adhesiveness to leukocytes and exposure of chondroitin sulphate. These results seem to indicate that the exposure of chondroitin sulphate is important in preventing cellular adhesion.  相似文献   
3.
L1 retroposons are represented in mice by subfamilies of interspersed sequences of varied abundance. Previous analyses have indicated that subfamilies are generated by duplicative transposition of a small number of members of the L1 family, the progeny of which then become a major component of the murine L1 population, and are not due to any active processes generating homology within preexisting groups of elements in a particular species. In mice, more than a third of the L1 elements belong to a clade that became active approximately 5 Mya and whose elements are > or = 95% identical. We have collected sequence information from 13 L1 elements isolated from two species of voles (Rodentia: Microtinae: Microtus and Arvicola) and have found that divergence within the vole L1 population is quite different from that in mice, in that there is no abundant subfamily of homologous elements. Individual L1 elements from voles are very divergent from one another and belong to a clade that began a period of elevated duplicative transposition approximately 13 Mya. Sequence analyses of portions of these divergent L1 elements (approximately 250 bp each) gave no evidence for concerted evolution having acted on the vole L1 elements since the split of the two vole lineages approximately 3.5 Mya; that is, the observed interspecific divergence (6.7%-24.7%) is not larger than the intraspecific divergence (7.9%-27.2%), and phylogenetic analyses showed no clustering into Arvicola and Microtus clades.   相似文献   
4.
5.
Molecular phylogeny and divergence times of drosophilid species   总被引:32,自引:15,他引:17  
The phylogenetic relationships and divergence times of 39 drosophilid species were studied by using the coding region of the Adh gene. Four genera--Scaptodrosophila, Zaprionus, Drosophila, and Scaptomyza (from Hawaii)--and three Drosophila subgenera--Drosophila, Engiscaptomyza, and Sophophora--were included. After conducting statistical analyses of the nucleotide sequences of the Adh, Adhr (Adh-related gene), and nuclear rRNA genes and a 905-bp segment of mitochondrial DNA, we used Scaptodrosophila as the outgroup. The phylogenetic tree obtained showed that the first major division of drosophilid species occurs between subgenus Sophophora (genus Drosophila) and the group including subgenera Drosophila and Engiscaptomyza plus the genera Zaprionus and Scaptomyza. Subgenus Sophophora is then divided into D. willistoni and the clade of D. obscura and D. melanogaster species groups. In the other major drosophilid group, Zaprionus first separates from the other species, and then D. immigrans leaves the remaining group of species. This remaining group then splits into the D. repleta group and the Hawaiian drosophilid cluster (Hawaiian Drosophila, Engiscaptomyza, and Scaptomyza). Engiscaptomyza and Scaptomyza are tightly clustered. Each of the D. repleta, D. obscura, and D. melanogaster groups is monophyletic. The splitting of subgenera Drosophila and Sophophora apparently occurred about 40 Mya, whereas the D. repleta group and the Hawaiian drosophilid cluster separated about 32 Mya. By contrast, the splitting of Engiscaptomyza and Scaptomyza occurred only about 11 Mya, suggesting that Scaptomyza experienced a rapid morphological evolution. The D. obscura and D. melanogaster groups apparently diverged about 25 Mya. Many of the D. repleta group species studied here have two functional Adh genes (Adh-1 and Adh-2), and these duplicated genes can be explained by two duplication events.   相似文献   
6.
The seed coat morphology, investigated in taxa representative of the main European groups ofAconitum, are in good agreement with the current taxonomy of the genus. The seed coat microcharacteristics (warty epidermal cells) are very constant. There is a trend for the reduction of longitudinal wings on the edges concomitant with the development of ridges and transverse wings on the faces. Another morphological progression leads from smooth to rugulose and eventually to transverse wing-bearing seed faces. A working hypothesis suggests an ecological adaptative significance to these changes.  相似文献   
7.
Sulfate reduction and S-oxidation in a moorland pool sediment   总被引:3,自引:2,他引:1  
In an oligotrophic moorland pool in The Netherlands, S cycling near the sediment/water boundary was investigated by measuring (1) SO4 2– reduction rates in the sediment, (2) depletion of SO4 2– in the overlying water column and (3) release of35S from the sediment into the water column. Two locations differing in sediment type (highly organic and sandy) were compared, with respect to reduction rates and depletion of SO4 2– in the overlying water.Sulfate reduction rates in sediments of an oligotrophic moorland pool were estimated by diagenetic modelling and whole core35SO4 2– injection. Rates of SO4 2– consumption in the overlying water were estimated by changes in SO4 2– concentration over time in in situ enclosures. Reduction rates ranged from 0.27–11.2 mmol m–2 d–1. Rates of SO4 2– uptake from the enclosed water column varied from –0.5, –0.3 mmol m–2 d–1 (November) to 0.43–1.81 mmol m–2 d–1 (July, August and April). Maximum rates of oxidation to SO4 2– in July 1990 estimated by combination of SO4 2– reduction rates and rates of in situ SO4 2– uptake in the enclosed water column were 10.3 and 10.5 mmol m–2 d–1 at an organic rich and at a sandy site respectively.Experiments with35S2– and35SO4 2– tracer suggested (1) a rapid formation of organically bound S from dissimilatory reduced SO4 2– and (2) the presence of mainly non SO4 2–-S derived from reduced S transported from the sediment into the overlying water. A35S2– tracer experiment showed that about 7% of35S2– injected at 1 cm depth in a sediment core was recovered in the overlying water column.Sulfate reduction rates in sediments with higher volumetric mass fraction of organic matter did not significantly differ from those in sediments with a lower mass fraction of organic matter.Corresponding author  相似文献   
8.
Surface and intracellular mucopolysaccharides of guinea-pig peritoneal macrophages maintained in suspension and monolayer culture were studied. At least five classes of compound (hyaluronic acid, heparan sulfate, dermatan sulfate, chondroitin 4-sulfate and chondroitin 6-sulfate) were resolved and characterized by electrophoresis and enzymatic degradation. The results reported here suggest that modulation of mucopolysaccharide exposure is involved in macrophage physiology. The possible biological role of surface mucopolysaccharides in macrophage activity is discussed.  相似文献   
9.
1. Predation‐exclusion experiments have highlighted that top‐down control is pervasive in terrestrial communities, but most of these experiments are simplistic in that they only excluded a single group of predators and the effect of removal was evaluated on a few species from the community. The main goal of our study was to experimentally establish the relative effects of ants and birds on the same arthropod assemblage of canopy trees. 2. We conducted 1‐year long manipulative experiments in an organic citrus grove intended to quantify the independent effects of bird and ant predators on the abundance of arthropods. Birds were excluded with plastic nets whereas ants were excluded with sticky barriers on the trunks. The sticky barrier also excluded other ground dwelling insects, like the European earwig Forficula auricularia L. 3. Both the exclusion of ants and birds affected the arthropod community of the citrus canopies, but the exclusion of ants was far more important than the exclusion of birds. Indeed, almost all groups of arthropods had higher abundance in ant‐excluded than in control trees, whereas only dermapterans were more abundant in bird‐excluded than in control trees. A more detailed analysis conducted on spiders also showed that the effect of ant exclusion was limited to a few families rather than being widespread over the entire diverse spectrum of spiders. 4. Our results suggest that the relative importance of vertebrate and invertebrate predators in regulating arthropod populations largely depends on the nature of the predator–prey system.  相似文献   
10.
Many members of the Orchidaceae, the largest vascular plant family in Ecuador, are at risk of extinction. It was therefore considered important to establish an efficient way of clonal propagation based on somatic embryogenesis of Cattleya maxima, a native Ecuadorian orchid. To this end, we evaluated the effect on somatic embryo induction of 12 combinations of 2,4-dichlorophenoxyacetic acid and 1-phenyl-3-(1,2,3-thiadiazol-5-yl)-urea, as well as three kinds of stresses. Protocorms produced 42% of embryogenic calli on 1/2 Murashige and Skoog (1/2 MS) medium, compared to 96.3% when protocorms were stressed for 6 h with 0.3 M NaCl, followed by cultivation on 1/2 MS medium supplemented with 0.1 mg L? 1 2,4-D. Our data demonstrated that the combination of either salt (0.3 M NaCl) or osmotic stress (0.4 M sorbitol) with subculture on 2,4-D (0.1 mg L–1) medium significantly increases the percentage of protocorms with embryogenic callus. The number of embryos per embryogenic callus was not significantly different from that obtained after subculture in growth factor-free medium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号