首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   4篇
  2023年   1篇
  2021年   2篇
  2019年   2篇
  2017年   2篇
  2016年   3篇
  2014年   1篇
  2013年   11篇
  2011年   1篇
  2005年   1篇
  1992年   3篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
1.
The efficacy of 2‐furfuraldehyde for control of Sclerotium rolfsii was studied in laboratory and greenhouse experiments. Mycelial growth of the fungus was reduced proportionally with concentrations of 0.1–0.5 ml furfuraldehyde l‐1 agar medium, and viability of sclerotia diminished on exposure to 2‐furfuraldehyde vapours. Detectable populations of bacteria and fungi, including Trichoderma spp., were reduced significantly (9=0.05) when furfuraldehyde was added to the agar used for soil dilution plates of untreated soil. Repeated treatments of natural soil with the fumigant significantly increased populations of Trichoderma spp. and bacteria, but diminished numbers of actinomycetes. Increasing dosages applied to soil artificially infested with S. rolfsii caused a reduction of disease on lentil, Lens culinaris. Results indicate that the compound, when applied to field soil, changes the composition of soil microflora and has potential for integrated control of S. rolfsii.  相似文献   
2.
Three strains of Bradyrhizobium, 280A, 2209A and 32H1, that nodulated peanuts (Arachis hypogaea L.), were tested for their ability to grow and survive at elevated temperatures of up to 42°C in laboratory culture. Strain 32H1 was unable to grow at 37°C and was more sensitive to elevated temperatures than the other two strains. All three produced heat-shock proteins of molecular weights 17 kDa and 18 kDa. Two greenhouse experiments were conducted to determine the effect of high root temperature on nodulation, growth and nitrogen fixation of peanut. Two peanut varieties (Virginia cv NC7 and Spanish cv Pronto) were inoculated and exposed to root temperatures of 30°, 37° and 40°C. Nodulation and nitrogen fixation were strongly affected by root temperature but there was no variety × temperature interaction. At a constant 40°C root temperature no nodules were formed. Nodules were formed when roots were exposed to this temperature with diurnal cycling but no nitrogen fixation occurred. Highest plant dry weight, shoot nitrogen content and total nitrogen were observed at a constant root temperature of 30°C. Increasing root temperature to 37°C reduced average nitrogen content by 37% and total nitrogen by 49% but did not reduce nodulation. The symbiotic performance of the strains corresponded to their abilities to grow and survive at high temperature in culture.  相似文献   
3.
4.
5.
Populations of microorganisms from soil treated with guanidine thiocyanate, guanylurea sulfate, thiourea, or furfural were compared with those of untreated soil. The materials effected quantitative and/or qualitative changes in composition of the soil microflora depending on the compound used. Guanidine thiocyanate (Gt) significantly (p0.05) increased total fungal populations relative to populations of other treatments. Populations of Penicillium purpurogenum were markedly higher in Gt-treated soil. Gt also increased total bacterial populations, and was the only compound that increased actinomycete populations. The relative percentage of Trichoderma harzianum was significantly higher in soil treated with thiourea than in the other treatments. Furfural increased the percentage of P. purpurogenum with respect to total fungi, and was as effective as guanylurea sulfate in increasing chitinolytic bacteria and those in the Pseudomonas cepacia-group. Thiourea most effectively promoted proliferation of coryneform bacteria. Chitinolytic fungi increased synergistically when Gt and guanylurea sulfate were applied in combination.  相似文献   
6.
Empirical studies that link plants intraspecific variation to environmental conditions are almost lacking, despite their relevance in understanding mechanisms of plant adaptation, in predicting the outcome of environmental change and in conservation. Here, we investigate intraspecific trait variation of four grassland species along with abiotic environmental variation at high spatial resolution (n = 30 samples per species trait and environmental factor per site) in two contrasting grassland habitats in Central Apennines (Italy). We test for phenotypic adaptation between habitats, intraspecific trait-environment relationships within habitats, and the extent of trait and environmental variation. We considered whole plant, clonal, leaf, and seed traits. Differences between habitats were tested using ANOVA and ANCOVA. Trait-environment relationships were assessed using multiple regression models and hierarchical variance partitioning. The extent of variation was calculated using the coefficient of variation. Significant intraspecific differences in trait attributes between the contrasting habitats indicate phenotypic adaptation to in situ environmental conditions. Within habitats, light, soil temperature, and the availability of nitrate, ammonium, magnesium and potassium were the most important factors driving intraspecific trait-environment relationships. Leaf traits and height growth show lower variability than environment being probably more regulated by plants than clonal traits which show much higher variability. We show the adaptive significance of key plant traits leading to intraspecific adaptation of strategies providing insights for conservation of extant grassland communities. We argue that protecting habitats with considerable medium- and small-scale environmental heterogeneity is important to maintain large intraspecific variability within local populations that finally can buffer against uncertainty of future climate and land use scenarios.  相似文献   
7.
Chronic nitrogen (N) deposition is a threat to biodiversity that results from the eutrophication of ecosystems. We studied long‐term monitoring data from 28 forest sites with a total of 1,335 permanent forest floor vegetation plots from northern Fennoscandia to southern Italy to analyse temporal trends in vascular plant species cover and diversity. We found that the cover of plant species which prefer nutrient‐poor soils (oligotrophic species) decreased the more the measured N deposition exceeded the empirical critical load (CL) for eutrophication effects (P = 0.002). Although species preferring nutrient‐rich sites (eutrophic species) did not experience a significantly increase in cover (P = 0.440), in comparison to oligotrophic species they had a marginally higher proportion among new occurring species (P = 0.091). The observed gradual replacement of oligotrophic species by eutrophic species as a response to N deposition seems to be a general pattern, as it was consistent on the European scale. Contrary to species cover changes, neither the decrease in species richness nor of homogeneity correlated with nitrogen CL exceedance (ExCLempN). We assume that the lack of diversity changes resulted from the restricted time period of our observations. Although existing habitat‐specific empirical CL still hold some uncertainty, we exemplify that they are useful indicators for the sensitivity of forest floor vegetation to N deposition.  相似文献   
8.
9.
Forest coppicing leads to changes in composition of the herbaceous understory through soil disturbance and alteration of the light regime. While the role of seed dispersal traits at the start of succession after coppicing has been extensively studied, the role of persistence traits such as clonal growth and bud banks is not yet sufficiently understood. To gain better understanding of this role, we studied the patterns of clonal growth organs and related clonal traits of species in a series of coppiced beech forests of the Central Apennines (Marches region, Italy) in various stages of recovery after the last coppicing event. We conducted stratified random sampling and established a chronosequence of recovery stages based on stand age (reflecting the number of years since the last coppicing). The beech stands were classified into three age groups (Post-logged, Recovering, and Old-coppice stands) according to the characteristic stages of beech coppice dynamics. Clonal growth organs and the corresponding clonal traits of plants in the forest understory vegetation were assessed with the help of a CLO-PLA1 database. We found no significant change in the proportion of clonal species along the studied chronosequence. In contrast, most of the traits and about the half of the clonal growth organs showed correlation with stand age or preference for a certain habitat (i.e., stage of regeneration). Clonal and bud bank traits proved to play an important role in the persistence of species subjected to forest coppicing cycles in the studied area.  相似文献   
10.
The silvicultural management of coppicing has been very common in deciduous forests in many European countries. After decades of decline of this practice, socio-economic changes might induce a revival valuing the biomass as a resource. New insights in the ecological processes that regulate plant diversity are relevant for a sustainable forest management. While studies on long-term changes are available, the short-term dynamics of the coppice forest understorey has not yet been explored. In this context, it is interesting to evaluate the species compositional changes, including the processes of species turnover and species impoverishment (nestedness) and to investigate the role of plant functional traits. For this purpose, we resampled a chronosequence of complex coppice beech forests of the Central Apennines (Italy) monitoring the short-time species dynamics of five years (i.e. from 2006 to 2011) in three age classes, i.e. post-logged, recovering and old coppice stands (0–16, 17–31 and > 32 years, respectively). In contrast to our expectation, declining species richness appeared only in the recovering stands, while the landscape scale (between-stand) heterogeneity, except for post-logged and recovering stands in 2011, did not change over five years. Significant temporal nestedness was found in each stage of succession. However, the rate of species turnover and species impoverishment do not significantly differ among the three age classes, indicating their constant importance along the forest regeneration after disturbance. Only in the early stage of forest regeneration after coppicing, species compositional changes are reflected by functional changes with surviving understorey species having clonal regeneration traits. Our results suggest an overall landscape-scale stability (and sustainability) of this coppice forest system. We conclude with management indications, highlighting the importance of maintaining the traditional local approach (coppicing with standards in small 0.5–1.0 ha sized management units with a ca 30-year rotation cycle) where active coppice parcels are interspersed by abandoned stands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号