首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   277篇
  免费   12篇
  289篇
  2021年   6篇
  2019年   2篇
  2018年   9篇
  2017年   3篇
  2016年   6篇
  2015年   12篇
  2014年   9篇
  2013年   12篇
  2012年   29篇
  2011年   21篇
  2010年   10篇
  2009年   12篇
  2008年   14篇
  2007年   21篇
  2006年   11篇
  2005年   17篇
  2004年   10篇
  2003年   8篇
  2002年   7篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1998年   5篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   4篇
  1989年   1篇
  1986年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1979年   1篇
  1978年   4篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
  1970年   1篇
  1951年   1篇
  1945年   1篇
  1918年   4篇
  1916年   5篇
  1915年   2篇
排序方式: 共有289条查询结果,搜索用时 7 毫秒
1.
Beyond its role as an electron acceptor in aerobic respiration, oxygen is also a key effector of many developmental events. The oxygen‐sensing machinery and the very fabric of cell identity and function have been shown to be deeply intertwined. Here we take a first look at how oxygen might lie at the crossroads of at least two of the major molecular pathways that shape pancreatic development. Based on recent evidence and a thorough review of the literature, we present a theoretical model whereby evolving oxygen tensions might choreograph to a large extent the sequence of molecular events resulting in the development of the organ. In particular, we propose that lower oxygenation prior to the expansion of the vasculature may favour HIF (hypoxia inducible factor)‐mediated activation of Notch and repression of Wnt/β‐catenin signalling, limiting endocrine cell differentiation. With the development of vasculature and improved oxygen delivery to the developing organ, HIF‐mediated support for Notch signalling may decline while the β‐catenin‐directed Wnt signalling is favoured, which would support endocrine cell differentiation and perhaps exocrine cell proliferation/differentiation.  相似文献   
2.
For maximal rates of CO2 assimilation in isolated intact spinach chloroplasts the generation of the adequate NADPH/ATP ratio is achieved either by cyclic electron flow around photosystem I or by linear electron transport to oxaloacetate, nitrite or oxygen (Mehler-reaction). The interrelationships between these poising mechanisms turn out to be strictly hierarchical. In the presence of antimycin A, an inhibitor of ferredoxin-dependent cyclic electron transport, the reduction of both, oxaloacetate and nitrite, but not that of oxygen restores CO2 fixation. When oxaloacetate and nitrite are added at low concentrations simultaneously during steady-state CO2 fixation, the reduction of nitrite is clearly preferred over the reduction of oxaloacetate, but CO2 fixation is not influenced. Nitrite reduction is not decreased upon addition of oxaloacetate, but vice versa. This is due to the regulation of NADP-malate dehydrogenase activation by electron pressure via the ferredoxin/thioredoxin system on the one hand, and by the NADPH/(NADP+NADPH) ratio (anabolic reduction charge, ARC) on the other hand. Thus the closing of the malate valve prevents drainage of reducing equivalents from the chloroplast (1) when a low ARC indicates a high demand for NADPH in the stroma and (2) when nitrite reduction reduces the electron pressure at ferredoxin. The malate valve is opened when cyclic electron transport is inhibited by antimycin A. Under these conditions the rate of malate formation is higher than in the absence of the inhibitor even in the presence of oxaloacetate, thus indicating that the regulation of the malate valve functions at various redox states of the acceptor side of Photosystem I.Abbreviations ARC anabolic reduction charge (NADPH/(NADP+NADPH)) - Chl chlorophyll - DTT dithiothreitol; Fd-ferredoxin - NADP-MDH NADP-malate dehydrogenase - OAA oxaloacetate - PS photosystem - qN non-photochemical quenching - qP photochemical quenching - E quantum efficiency of PS II Dedicated to Prof. Dr. Hans Walter Heldt on the occasion of his 60th birthday.  相似文献   
3.
Summary This study has monitored junctional and nonjunctional resistance. [Ca2+] i and [H] i , and the effects of various drugs in crayfish septate axons exposed to neutral anesthetics. The uncoupling efficiency of heptanol and halothane is significantly potentiated by caffeine and theophylline. The modest uncoupling effects of isoflurane, described here for the first time, are also enhanced by caffeine. Heptanol causes a decrease in [Ca2+] i and [H+] i both in the presence and absence of either caffeine or theophylline. A similar but transient effect on [Ca2+] i is observed with halothane. 4-Aminopyridine strongly inhibits the uncoupling effects of heptanol. The observed decrease in [Ca2–] i with heptanol and halothane and negative results obtained with different [Ca2+] o , Ca2+-channel blockers (nisoldipine and Cd2+) and ryanodine speak against a Ca2+ participation. Negative results obtained with 3-isobutyl-l-methylxanthine, forskolin, CPT-cAMP, 8Br-cGMP, adenosine, phorbol ester and H7, superfused in the presence and absence of caffeine and/or heptanol. indicate that neither the heptanol effects nor their potentiation by caffeine are mediated by cyclic nucleotides, adenosine receptors and kinase C. The data suggest a direct effect of anesthetics. possibly involving both polar and hydrophobic interactions with channel proteins. Xanthines and 4-aminopyridine may participate by influencing polar interactions. The potentiating effect of xanthines on cell-to-cell uncoupling by anesthetics may provide some clues on the nature of cardiac arrhythmias in patients treated with theophylline during halothane anesthesia.  相似文献   
4.
Microboring or euendolithic microorganisms, which colonize and penetrate various carbonate substrates, are abundant in coral reef ecosystems and play a major role in reef carbonate dissolution. A few studies reported the presence of euendoliths in stylasterid coral skeletons but the biological identity, distribution and abundance of these microorganisms remain largely unknown. Observations of over 100 stylasterid colonies, collected in the Indo-Pacific area, revealed for the first time that the association between these corals and euendolith organisms appears to be quite common in shallow tropical waters. The most abundant euendolith was identified as a cryptic stage in the development of the rhodophyte Porphyra (Conchocelis stage). The euendoliths were observed in the skeletons of seven species of three genera (four Stylaster, two Distichopora and one Lepidotheca). The presence of euendoliths inside skeletons conferred a particular colour to the studied stylasterid corals. Distribution and abundance of microborings varied significantly among stylasterid species and among branches of a single colony and so did the colour of their skeletons. Colonization of skeletons and the associated colour distribution were almost uniform in some stylasterids, forming an upward gradually diminishing or sharply limited gradient. This study shows that patterns of euendolith colonization and growth in stylasterid skeletons may depend on the stage of the euendolith development as well as on their environmental requirements such as light exposure.  相似文献   
5.
6.
[NiFe]-hydrogenases require a set of complementary and regulatory proteins for correct folding and maturation processes. One of the essential regulatory proteins, HypF (82kDa) contains a N-terminal acylphosphatase (ACT)-like domain, a sequence motif shared with enzymes catalyzing O-carbamoylation, and two zinc finger motifs similar to those found in the DnaJ chaperone. The HypF acylphosphatase domain is thought to support the conversion of carbamoylphosphate into CO and CN(-), promoting coordination of these ligands to the hydrogenase metal cluster. It has been shown recently that the HypF N-terminal domain can aggregate in vitro to yield fibrils matching those formed by proteins linked to amyloid diseases. The 1.27A resolution HypF acylphosphatase domain crystal structure (residues 1-91; R-factor 13.1%) shows a domain fold of betaalphabetabetaalphabeta topology, as observed in mammalian acylphosphatases specifically catalyzing the hydrolysis of the carboxyl-phosphate bonds in acylphosphates. The HypF N-terminal domain can be assigned to the ferredoxin structural superfamily, to which RNA-binding domains of small nuclear ribonucleoproteins and some metallochaperone proteins belong. Additionally, the HypF N-terminal domain displays an intriguing structural relationship to the recently discovered ACT domains. The structures of different HypF acylphosphatase domain complexes show a phosphate binding cradle comparable to the P-loop observed in unrelated phosphatase families. On the basis of the catalytic mechanism proposed for acylphosphatases, whereby residues Arg23 and Asn41 would support substrate orientation and the nucleophilic attack of a water molecule on the phosphate group, fine structural features of the HypF N-terminal domain putative active site region may account for the lack of acylphosphatase activity observed for the expressed domain. The crystallographic analyses here reported were undertaken to shed light on the molecular bases of inactivity, folding, misfolding and aggregation of the HypF N-terminal acylphosphatase domain.  相似文献   
7.
8.
Padoa-Schioppa C  Li CS  Bizzi E 《Neuron》2002,36(4):751-765
It is widely acknowledged that movements are planned at the level of the kinematics. However, the central nervous system must ultimately transform kinematic plans into dynamics-related commands. How, when, and where the kinematics-to-dynamics (KD) transformation is processed represent fundamental and unanswered questions. We recorded from the supplementary motor area (SMA) of two monkeys as they executed visually instructed reaching movements. We specifically analyzed a delay period following the instruction but prior to the go signal (motor planning). During the delay, a group of neurons in the SMA progressively came to reflect the dynamics rather than the desired kinematics of the upcoming movement. This finding suggests that some neurons in the SMA participate in the KD transformation.  相似文献   
9.
Bruchid larvae cause major losses in grain legume crops throughout the world. Some bruchid species, such as the cowpea weevil and the Mexican bean weevil, are pests that damage stored seeds. Plant lectins have been implicated as antibiosis factors against insects, particularly the cowpea weevil, Callosobruchus maculatus. Talisia esculenta lectin (TEL) was tested for anti-insect activity against C. maculatus and Zabrotes subfasciatus larvae. TEL produced ca. 90% mortality to these bruchids when incorporated in an artificial diet at a level of 2% (w/w). The LD(50) and ED(50) for TEL was ca. 1% (w/w) for both insects. TEL was not digested by midgut preparations of C. maculatus and Z. subfasciatus. The transformation of the genes coding for this lectin could be useful in the development of insect resistance in important agricultural crops.  相似文献   
10.
Stem slices cut from micropropagated cuttings of apple rootstock M26 were cultured in the presence of indole-3-butyric acid (IBA) plus N,N-bis-(2,3-methylenedioxyphenyl)urea or N,N-bis-(3,4-methylenedioxyphenyl)urea, to verify if there was an interaction between them in enhancing root formation. The N,N-bis-(methylenedioxyphenyl)ureas were supplemented after, before and in the simultaneous presence of auxin. Our data demonstrate that only the simultaneous presence of auxin and N,N-bis-(methylenedioxyphenyl)ureas in the culture medium enhanced root formation on M26 stem slices. The percentage of rooted slices obtained in the presence of the mixtures was significantly different from that obtained in the presence of low auxin concentration alone (1µM). Moreover both the percentage of rooted slices and the number of roots per slice obtained in these culture conditions was not significantly different to that of the optimal auxinic treatment in which the auxin concentration was threefold higher.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号