首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   13篇
  172篇
  2021年   3篇
  2019年   4篇
  2017年   2篇
  2015年   6篇
  2014年   11篇
  2013年   8篇
  2012年   13篇
  2011年   7篇
  2009年   5篇
  2008年   4篇
  2007年   6篇
  2006年   3篇
  2005年   3篇
  2004年   3篇
  2003年   5篇
  2002年   5篇
  2001年   4篇
  2000年   6篇
  1999年   6篇
  1998年   3篇
  1994年   2篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1983年   2篇
  1982年   3篇
  1981年   5篇
  1980年   5篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1968年   2篇
  1967年   3篇
  1966年   2篇
  1965年   2篇
  1964年   1篇
  1916年   1篇
  1915年   1篇
  1902年   1篇
排序方式: 共有172条查询结果,搜索用时 15 毫秒
1.
An investigation of the regulation of specific anti-self responses was initiated with the development of an in vitro system in which spleen cells from NZB mice were stimulated by syngeneic mouse erythrocytes (MRBC) to produce MRBC-specific autoantibody-secreting cells. The response was measured by a modification of the focus-forming cell (FFC) assay, which enumerates cells secreting IgG, which specifically bind MRBC. Spleen cells from 9- to 12-mo-old NZB mice developed MRBC-specific FFC after 3 to 5 days in culture with MRBC. Few FFC were detected in the absence of MRBC in culture. Spleen cells from young (1- to 4-mo-old) NZB mice developed few if any FFC. Spleen cell populations containing T cells from young NZB mice suppressed this anti-MRBC response, whereas B cell populations from these young mice did not. In contrast, spleen cells, including T cell-enriched populations from old, Coombs'-positive mice were not capable under the same conditions of producing equivalent suppression of this in vitro autoimmune response. These data suggest that a population of suppressor T cells that may control the autoimmune anti-MRBC response in young NZB mice is lost, or else its activity is masked in old NZB mice that are actively producing anti-MRBC antibody.  相似文献   
2.
3.
4.
5.
Human recombinant tumor necrosis factor-alpha (rTNF alpha) alone (up to 1000 units/ml) did not alter either basal or human chorionic gonadotropin (hCG)-induced testosterone formation in primary culture of rat Leydig cells. However, concomitant addition of rTNF alpha with human recombinant interleukin-1 beta (rIL-1 beta) enhanced the inhibitory effects of rIL-1 beta. The rIL-1 beta dose response curve was shifted to the left (IC50 changed from 1 ng/ml to 0.3 ng/ml). Even though rTNF alpha had no effect on testosterone formation, hCG-stimulated cyclic AMP formation was inhibited by rTNF alpha in a dose dependent manner. In the presence of both rTNF alpha and rIL-1 beta, hCG-induced cyclic AMP formation and binding of [125I]-hCG to Leydig cells were further inhibited. Testicular macrophages represent about 20% of the interstitial cells. TNF alpha and IL-1 may be produced locally by interstitial macrophages and have paracrine effects on Leydig cell function.  相似文献   
6.
Demonstration of active suppressor cells in spleens of young NZB mice   总被引:1,自引:0,他引:1  
NZB mice, a strain prone to the development of autoimmune disease, have during the first 2 weeks of life suppressor cells in their spleens which can in coculture with adult spleen cells suppress the antibody response to sheep red blood cells (SRBC) generated in culture by the adult cells. The suppressive activity of spleen cells from NZB mice in the first week after birth is similar to that of spleen cells from 4-day-old C57BL/6 mice, a strain which does not spontaneously develop autoimmune disease. As in “normal” strains of mice, suppressor cell activity in NZB mice is diminished at 2 weeks and undetectable at 3 weeks of age. The data indicate that there is no defect inherent in the suppressor cells detected in the spleens of newborn and young NZB mice and suggest that the development of autoimmune responses does not result from a lack of suppressor cells in the young animals.  相似文献   
7.
Synaptic pathology and mitochondrial oxidative damage are early events in Alzheimer's disease (AD) progression. Loss of synapses and synaptic damage are the best correlates of cognitive deficits found in AD patients. Recent research on amyloid beta (Aβ) and mitochondria in AD revealed that Aβ accumulates in synapses and synaptic mitochondria, leading to abnormal mitochondrial dynamics and synaptic degeneration in AD neurons. Further, recent studies using live-cell imaging and primary neurons from amyloid beta precursor protein (AβPP) transgenic mice revealed reduced mitochondrial mass, defective axonal transport of mitochondria and synaptic degeneration, indicating that Aβ is responsible for mitochondrial and synaptic deficiencies. Tremendous progress has been made in studying antioxidant approaches in mouse models of AD and clinical trials of AD patients. This article highlights the recent developments made in Aβ-induced abnormal mitochondrial dynamics, defective mitochondrial biogenesis, impaired axonal transport and synaptic deficiencies in AD. This article also focuses on mitochondrial approaches in treating AD, and also discusses latest research on mitochondria-targeted antioxidants in AD. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.  相似文献   
8.
9.

Background  

Multi-drug efflux pumps have been increasingly recognized as a major component of resistance in P. aeruginosa. We have investigated the expression level of efflux systems among clinical isolates of P. aeruginosa, regardless of their antimicrobial susceptibility profile.  相似文献   
10.

Uxmal and Tulum are two important Mayan sites in the Yucatan peninsula. The buildings are mainly composed of limestone and grey/black discoloration is seen on exposed walls and copious greenish biofilms on inner walls. The principal microorganisms detected on interior walls at both Uxmal and Tulum were cyanobacteria; heterotrophic bacteria and filamentous fungi were also present. A dark‐pigmented mitosporic fungus and Bacillus cereus, both isolated from Uxmal, were shown to be acidogenic in laboratory cultures. Cyanobacteria belonging to rock‐degrading genera Synechocystis and Gloeocapsa were identified at both sites. Surface analysis previously showed that calcium ions were present in the biofilms on buildings at Uxmal and Tulum, suggesting the deposition of biosolubilized stone. Apart from their potential to degrade the substrate, the coccoid cyanobacteria supply organic nutrients for bacteria and fungi, which can produce organic acids, further increasing stone degradation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号