首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2014年   1篇
  2006年   1篇
  2004年   1篇
  1999年   1篇
  1996年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
An experiment was conducted from 1997 to 2000 on an acid soil in Cameroon to assess the effectiveness of cultivating acid tolerant maize (Zea mays L.) cultivar and the use of organic and inorganic fertilizers as options for the management of soil acidity. The factors investigated were: phosphorus (0 and 60 kg ha?1), dolomitic lime (0 and 2 t ha?1), organic manure (no manure, 4 t ha?1 poultry manure, and 4 t ha?1 of leaves of Senna spectabilis), and maize cultivars (ATP-SR-Y – an acid soil-tolerant, and Tuxpeño sequia – an acid susceptible). On acid soil, maize grain yield of ATP-SR-Y was 61% higher than the grain yield of Tuxpeño sequia. Continuous maize cultivation on acid soil further increased soil acidity, which was manifested by a decrease in pH (0.23 unit), exchangeable Ca (31%) and Mg (36%) and by an increase in exchangeable Al (20%). Yearly application of 60 kg ha?1 of P for 3 years increased soil acidity through increases in exchangeable Al (8%) and H (16%) and a decrease in exchangeable Ca (30%), Mg (11%) and pH (0.07 unit). Lime application increased grain yield of the tolerant (82%) and susceptible (208%) cultivars. The grain yield increases were associated with a mean decrease of 43% in exchangeable Al, and 51% in H, a mean increase of 0.27 unit in pH, 5% in CEC, 154% in exchangeable Ca, and 481% in Mg contents of the soil. Poultry manure was more efficient than leaves of Senna producing 38% higher grain yield. This yield was associated with increases in pH, Ca, Mg and P, and a decrease in Al. The highest mean grain yields were obtained with lime added to poultry manure (4.70 t ha?1) or leaves of Senna (4.72 t ha?1). Grain yield increase was more related to the decrease in exchangeable Al (r = ?0.86 to ?0.95, P<0.01) and increase in Ca (r = 0.78–0.94, P<0.01), than to pH (r = ?0.57 (non-significant) to ?0.58 (P<0.05)). Exchangeable Al was the main factor determining pH (r = ?0.88 to ?0.92, P<0.01). The yield advantage of the acid tolerant cultivar was evident even after correcting for soil acidity. Acid soil-tolerant cultivars are capable of bringing unproductive acid soils into cultivation on the short run. The integration of soil amendments together with acid soil-tolerant cultivar offers a sustainable and comprehensive strategy for the management of acid soils in the tropics.  相似文献   
2.
The object of this study was to analyze the dynamics of Al and protons in the rhizosphere of maize cultivated in a simple acid substrate, so as to allow the use of a dynamic model of the functioning of a rhizosphere consisting of an organic phase (an agarose gel) and a mineral phase (an amorphous aluminium hydroxide). Two cultivars of maize (Zea mays L.), one Al-sensitive and the other Al-tolerant, were cultivated on this substrate in the presence of different proportions of NH 4 + and NO 3 - , which served to acidify the rhizosphere to a greater or lesser extent. The state of the agarose gel and of the cell walls of the roots were monitored using an ion exchange model which had previously been calibrated for each substrate. The experiment showed that Al and protons reduce root growth and the Ca and Mg content in the root, while relative growth varies little between pH 4.0 and pH 4.5. The model showed that competition between Al and protons for the binding sites of the cell walls might account for these results. The sensitivity of the model to the rate of Al(OH)3 dissolution and to the cation exchange capacity of the culture substrate was tested by numerical simulation. When roots release protons and dissolve Al(OH)3 in the rhizosphere, there is little possibility of Al desorption by protons on the cell walls at pHs compatible with good root growth of maize, plant specie sensitive to Al and H. Furthermore, the phytotoxicity of the different forms of Al hydroxides should be considered only in taking into account the dynamics of the whole system, in particular the solubilisation of Al in the rhizosphere. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
3.
4.
Calba  Henri  Firdaus  Cazevieille  Patrick  Thée  Charles  Poss  Roland  Jaillard  Beno^it 《Plant and Soil》2004,260(1-2):33-46
The goals of this work were to understand the dynamics of H+, Al and Ca in the rhizosphere of maize cultivated in tropical acid soils, and to evaluate the contribution of the dissolution kinetics of the Al-hydroxides to Al dynamics. The study of the dissolution kinetics was based on a comparison between experimental and simulated data, using a model of the chemical processes in the rhizosphere. Two Oxisols, pH 5.1 and 4.6, and one Ultisol, pH 5.2, were studied. An Al-tolerant maize variety (Zea mays L.) was grown for 14 days on a 3-mm thick soil layer. The composition of the soil and the soil solution, together with the concentration of Al in the roots, were determined throughout the experiment. The results showed that root growth (i) decreased the soil solution pH, up to one pH unit, (ii) increased Al concentration in the soil solution, (iii) increased exchangeable Al, and (iv) decreased exchangeable Ca. Soil solution pH, exchangeable Al, and exchangeable Ca were closely linked. Exchangeable Al increased 1.5 – 3.0 times, due to the dissolution of easily mobilised Al components. In addition, Al accumulation in roots depended mainly on Al in the soil solution. Modelling the interactions between H+, Al, and Ca proved that the main factor determining Al in the soil solution was the kinetic reactivity of the easily mobilised Al components. These components, probably poorly crystallised Al-hydroxides, are key players in the functioning of the rhizosphere in tropical acid soils.  相似文献   
5.
Because of experimental difficulties, few authors have studied the dynamics of aluminium in the rhizosphere. The aim of this paper is to present a suitable method for studying rhizosphere Al dynamics. It is based on the use of agarose as a substrate for plant growth. Agar and agarose gels are often used in rhizosphere studies, but most are poorly characterized and occasionally give rise to experimental artefacts, especially with low mobility elements like Al. The results reported here show that agarose is a relatively pure substrate, nearly devoid of phosphorus and other Al-complexing substances. Aqueous extracts of agarose also exhibit Al phytotoxicity equivalent to that of a nutrient solution. Since this substrate has the properties of a variable charge exchange complex, it can be considered as a physico-chemical model for organic matter. Finally, its Al adsorption capacity is high enough for the Al reserve in the substrate not to exert a limiting effect on plants and low enough to allow accurate measurement of Al depletion in the rhizophere.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号