首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2021年   1篇
  2020年   1篇
  2013年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
International Journal of Peptide Research and Therapeutics - The aim of the current study was to design a drug delivery nano-system of natural growth-modulating peptide known as GHK that naturally...  相似文献   
2.
Abstract

Antibodies play an important role in combating and controlling viral diseases such as influenza. Immunoglobulin Y (IgY) antibodies have several advantages such as a less invasive manufacturing process, ease of isolation, higher affinity compared with IgG antibodies, and cost-effectiveness. To date, although specific IgY production has been performed for different strains of influenza A, to the best of our knowledge, an IgY against the M2e peptide has not been produced. In the current study, IgY antibodies are produced, purified, and characterized using the M2e peptide sequence for the first time with the intent to apply them for the diagnosis of influenza A virus. Anti-M2e IgY antibodies are obtained from eggs using a two-step purification method. The activity and characterization of the antibodies are determined using an enzyme-linked immunosorbent assay, a nano-spectrophotometer, an SDS-Page assay, and a Western Blot analysis. Finally, anti-M2e IgY antibodies are conjugated to the latex nanoparticles, and the reaction between the influenza A virus and the nanoparticles is demonstrated using light microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy. In conclusion, this study shows that anti-M2e IgY antibodies can contribute to the diagnosis, treatment, and prevention of the influenza A virus.  相似文献   
3.
Abstract

In this study, we aimed to synthesize copper oxide nanoparticles (CuONPs) mediated by plant extract in an environmentally friendly way and to reveal their potential biological activities. Here we synthesized CuONPs by using different concentrations of aqueous leaf extract of Thymbra spicata at 80?°C to obtain Ts1CuONPs and Ts2CuONPs. Biosynthesized nanoparticles were characterized by using UV-Vis, AFM, FTIR, SEM-EDS, TEM, DLS and zeta potential analysis. The antibacterial activity of the nanoparticles was determined by calculation of the inhibition zone and minimum inhibitory concentration against selected bacterial strains. Moreover, the antioxidant activity of the as-synthesized nanoparticles was evaluated based on DPPH radical scavenging activity. The results indicate that the as-synthesized NPs have an average size of 26.8 and 21?nm for Ts1CuONPs and Ts2CuONPs, respectively. The formed CuONPs have more antibacterial action on gram-positive bacteria compared to gram-negative bacteria. In addition, CuONPs demonstrated good inhibition activity against biofilm formation of Staphylococcus aureus (S. aureus). Furthermore, the results showed that the smaller size of the CuONPs caused the higher cytotoxicity on L929 mouse fibroblast cells. The as-synthesized CuONPs exhibit antibacterial and antibiofilm potential against S. aureus, indicating that they may be attractive candidates to use in future therapeutic applications.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号