首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   15篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2020年   1篇
  2019年   2篇
  2018年   7篇
  2017年   3篇
  2016年   8篇
  2015年   13篇
  2014年   10篇
  2013年   7篇
  2012年   10篇
  2011年   10篇
  2010年   3篇
  2009年   10篇
  2008年   10篇
  2007年   2篇
  2006年   8篇
  2005年   1篇
  2004年   5篇
  2003年   6篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   9篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1995年   6篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   5篇
  1990年   1篇
  1989年   3篇
  1988年   5篇
  1987年   1篇
  1985年   2篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1977年   1篇
  1971年   3篇
  1970年   1篇
排序方式: 共有190条查询结果,搜索用时 15 毫秒
1.
2.
Feeding rats a hyperlipidic diet in which animals were offered daily a variety of high-energy food resulted in a significant increase of serum free fatty acids and a decrease of phospholipids with respect to controls. On the contrary, there were no significant differences in erythrocyte membrane total lipid composition between the two groups. Erythrocyte membranes showed a significant decrease in saturated fatty acid content and a significant increase in (n-6) polyunsaturated fatty acid content; (n-3) polyunsaturated fatty acids significantly decreased. Membrane fluidity, investigated by fluorescence polarization of diphenylhexatriene, significantly increased in the erythrocyte membranes of the experimental group. These results seem compatible with the decreased saturated/unsaturated fatty acid ratio. A significant decrease of (Na+-K+)ATPase activity occurred in erythrocyte membranes of the experimental group rats with respect to the controls.  相似文献   
3.
The renaturation of scrambled (oxidized and inactive) RNase A is catalyzed by soybean (Glycine max cv Williams 82) plasma membranes. The catalysis is stimulated by the auxin herbicide 2,4-dichlorophenoxyacetic acid or by the natural auxin indole-3-acetic acid. The inactive auxin analog, 2,3-dichlorophenoxyacetic acid, is without effect. The activity occurs in the absence of external electron acceptors or donors and therefore appears to be a true disulfide-thiol-interchange activity between protein disulfides and thiols of RNase A and those of plasma membrane proteins. The activity is not affected by a mixture of reduced and oxidized glutathione. However, no auxin-stimulated activity was observed in the presence of either oxidized glutathione or reduced glutathione alone, a response characteristic of the previously described auxin-stimulated NADH oxidase activity of soybean plasma membranes. Taken together, the results suggest the operation in the plant plasma membrane of a protein disulfide-thiol-interchange activity that is stimulated by auxins. The auxin stimulations of the interchange activity are prevented by glutathione, reduced glutathione, and brefeldin A at concentrations that also prevent auxin stimulation of NADH oxidation by isolated plasma membranes and inhibit, as well, the auxin-stimulated elongation of excised segments of soybean hypocotyls.  相似文献   
4.
Abundant representation of sharks in the fossil record makes this group a superb system in which to investigate rates and patterns of molecular evolution and to explore the strengths and weaknesses of phylogenetic inferences from molecular data. In this report, the molecular evolution of the cytochrome b gene in sharks is described and the information related to results from phylogenetic analysis of the data evaluated in the light of a phylogeny derived independently of the molecular data. Across divergent lineages of sharks there is evidence for significant substitution rate variation, departure from compositional equilibrium, and substantial homoplasy; nevertheless, the signal of evolutionary history is evident in patterns of shared transversions and amino acid replacements.   相似文献   
5.
There is marked heterogeneity of nucleotide composition in mitochondrial DNA across divergent animals. Differences in nucleotide composition presumably reflect differences in directional nucleotide substitution for A+T or G+C nucleotides. In mitochondrial DNA, there is A+T directional nucleotide substitution in most (if not all) animals surveyed, and the magnitude of directional A+T nucleotide substitution differs greatly within and among groups. Differences in directional nucleotide substitution among lineages of mammals can be explained by changes in metabolic physiology. This relationship is thought to be mediated by the effect of oxygen radicals because these toxic compounds are by-products of aerobic metabolism and are known mutagens. Association between metabolism and nucleotide composition provides additional evidence in favor of the hypothesis that rates and patterns of nucleotide substitution in mitochondrial DNA can be influenced by factors that impinge on rates of endogenous DNA damage.   相似文献   
6.
Significant differences in gross wall chemical composition were detected in four commercial Agaricus bisporus strains. All were grown under the same conditions and their walls prepared by a mild method of breakage. A more detailed analysis of the wall fractions, isolated by means of their distinct solubilities, also showed striking structural differences among the four strains studied. The detected differences, not only in the overall composition of the wall but also in the polysaccharide structure, could assist in the characterization of strains and/or varieties of the commercial basidiomycete A. bisporus.  相似文献   
7.
A method of rapid freezing in supercooled Freon 22 (monochlorodifluoromethane) followed by cryoultramicrotomy is described and shown to yield ultrathin sections in which both the cellular ultrastructure and the distribution of diffusible ions across the cell membrane are preserved and intracellular compartmentalization of diffusabler ions can be quantitated. Quantitative electron probe analysis (Shuman, H., A.V. Somlyo, and A.P. Somlyo. 1976. Ultramicros. 1:317-339.) of freeze-dried ultrathin cryto sections was found to provide a valid measure of the composition of cells and cellular organelles and was used to determine the ionic composition of the in situ terminal cisternae of the sarcoplasmic reticulum (SR), the distribution of CI in skeletal muscle, and the effects of hypertonic solutions on the subcellular composition if striated muscle. There was no evidence of sequestered CI in the terminal cisternae of resting muscles, although calcium (66mmol/kg dry wt +/- 4.6 SE) was detected. The values of [C1](i) determined with small (50-100 nm) diameter probes over cytoplasm excluding organelles over nuclei or terminal cisternae were not significantly different. Mitochondria partially excluded C1, with a cytoplasmic/ mitochondrial Ci ratio of 2.4 +/- 0.88 SD. The elemental concentrations (mmol/kg dry wt +/- SD) of muscle fibers measured with 0.5-9-μm diameter electron probes in normal frog striated muscle were: P, 302 +/- 4.3; S, 189 +/- 2.9;C1, 24 +/- 1.1;K, 404 +/- 4.3, and Mg, 39 +/- 2.1. It is concluded that: (a) in normal muscle the "excess CI" measured with previous bulk chemical analyses and flux studies is not compartmentalized in the SR or in other cellular organelles, and (b) the cytoplasmic C1 in low [K](0) solutions exceeds that predicted by a passive electrochemical distribution. Hypertonic 2.2 X NaCl, 2.5 X sucrose, or 2.2 X Na isethionate produced: (a) swollen vacuoles, frequently paired, adjacent to the Z lines and containing significantly higher than cytoplasmic concentrations of Na and Cl or S (isethionate), but no detectable Ca, and (b) granules of Ca, Mg, and P = approximately (6 Ca + 1 Mg)/6P in the longitudinal SR. It is concluded that hypertonicity produces compartmentalized domains of extracellular solutes within the muscle fibers and translocates Ca into the longitudinal tubules.  相似文献   
8.
Streptozotocin induced diabetes in rats increased the activities of the three mitochondrial enzymes, carbamylphosphate synthetase, ornithine transcarbamylase and N-acetylglutamate synthetase, but not of the cytosolic N-acetylglutamate deacylase. Levels of both N-acetylglutamate and arginine, which are activators of carbamylphosphate synthetase and N-acetylglutamate synthetase respectively, increased in diabetes. These results serve to explain the increase both of mitochondrial citrulline and urea formation in hepatocytes and the increased urea excretion in diabetes.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号