排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Recent comparative studies have shown that, in many instances, the genetic network underlying the development of distinct organ systems is similar in invertebrate and vertebrate organisms. Genetically well-characterized, simple invertebrate model systems, such as Caenorhabditis elegans and Drosophila melanogaster, can thus provide useful insight for understanding more complex organ systems in vertebrates. Here, we summarize recent progress in the genetic analysis of tracheal development in Drosophila and compare the results to studies aimed at a better understanding of lung development in mouse and man. Clearly, both striking similarities and important differences are apparent, but it might still be too early to conclude whether the former or the latter prevail. 相似文献
2.
Itten René Hischier Roland Andrae Anders S. G. Bieser Jan C. T. Cabernard Livia Falke Annemarie Ferreboeuf Hugues Hilty Lorenz M. Keller Regula L. Lees-Perasso Etienne Preist Chris Stucki Matthias 《The International Journal of Life Cycle Assessment》2020,25(10):2093-2098
The International Journal of Life Cycle Assessment - 相似文献
3.
Asymmetric cell division generates cell diversity during development and regulates stem-cell self-renewal in Drosophila and mammals. In Drosophila, neuroblasts align their spindle with a cortical Partner of Inscuteable (Pins)-G alpha i crescent to divide asymmetrically, but the link between cortical polarity and the mitotic spindle is poorly understood. Here, we show that Pins directly binds, and coimmunoprecipitates with, the NuMA-related Mushroom body defect (Mud) protein. Pins recruits Mud to the neuroblast apical cortex, and Mud is also strongly localized to centrosome/spindle poles, in a similar way to NuMA. In mud mutants, cortical polarity is normal, but the metaphase spindle frequently fails to align with the cortical polarity axis. When spindle orientation is orthogonal to cell polarity, symmetric division occurs. We propose that Mud is a functional orthologue of mammalian NuMA and Caenorhabditis elegans Lin-5, and that Mud coordinates spindle orientation with cortical polarity to promote asymmetric cell division. 相似文献
4.
Cell division orientation during animal development can serve to correctly organize and shape tissues, create cellular diversity or both. The underlying cellular mechanism is regulated spindle orientation. Depending on the developmental context, extrinsic signals or intrinsic cues control the correct orientation of the mitotic spindle. Cell geometry has been known to be another determinant of spindle orientation and recent results have shed new light?on the link between cellular shape and cell division orientation. The importance of controlling spindle orientation is manifested in neurodevelopmental defects such as?microcephaly, tumor initiation as well as defects in tissue architecture and cell fate misspecification. Here, we summarize the role of oriented cell division during animal development and also outline the cellular and molecular mechanisms in selected invertebrate and vertebrate systems. 相似文献
5.
Distinct roles for two receptor tyrosine kinases in epithelial branching morphogenesis in Drosophila
Branching morphogenesis is a widespread mechanism used to increase the surface area of epithelial organs. Many signaling systems steer development of branched organs, but it is still unclear which cellular processes are regulated by the different pathways. We have used the development of the air sacs of the dorsal thorax of Drosophila to study cellular events and their regulation via cell-cell signaling. We find that two receptor tyrosine kinases play important but distinct roles in air sac outgrowth. Fgf signaling directs cell migration at the tip of the structure, while Egf signaling is instrumental for cell division and cell survival in the growing epithelial structure. Interestingly, we find that Fgf signaling requires Ras, the Mapk pathway, and Pointed to direct migration, suggesting that both cytoskeletal and nuclear events are downstream of receptor activation. Ras and the Mapk pathway are also needed for Egf-regulated cell division/survival, but Pointed is dispensable. 相似文献
6.
Mutations in the gene microcephalin/MCPH1 result in the neurodevelopmental disease microcephaly. A recent report provides evidence that MCPH1 controls neuroprogenitor entry into mitosis via the Chk1-Cdc25b centrosome maturation pathway. 相似文献
7.
Stem cell self-renewal: centrosomes on the move 总被引:3,自引:0,他引:3
Three recent studies show that centrosome asymmetry correlates with self-renewal of Drosophila neural and germline stem cells and that equalizing centrosomes disrupts asymmetric cell division. 相似文献
8.
A genetic mosaic analysis with a repressible cell marker screen to identify genes involved in tracheal cell migration during Drosophila air sac morphogenesis
下载免费PDF全文

Chanut-Delalande H Jung AC Lin L Baer MM Bilstein A Cabernard C Leptin M Affolter M 《Genetics》2007,176(4):2177-2187
Branching morphogenesis of the Drosophila tracheal system relies on the fibroblast growth factor receptor (FGFR) signaling pathway. The Drosophila FGF ligand Branchless (Bnl) and the FGFR Breathless (Btl/FGFR) are required for cell migration during the establishment of the interconnected network of tracheal tubes. However, due to an important maternal contribution of members of the FGFR pathway in the oocyte, a thorough genetic dissection of the role of components of the FGFR signaling cascade in tracheal cell migration is impossible in the embryo. To bypass this shortcoming, we studied tracheal cell migration in the dorsal air sac primordium, a structure that forms during late larval development. Using a mosaic analysis with a repressible cell marker (MARCM) clone approach in mosaic animals, combined with an ethyl methanesulfonate (EMS)-mutagenesis screen of the left arm of the second chromosome, we identified novel genes implicated in cell migration. We screened 1123 mutagenized lines and identified 47 lines displaying tracheal cell migration defects in the air sac primordium. Using complementation analyses based on lethality, mutations in 20 of these lines were genetically mapped to specific genomic areas. Three of the mutants were mapped to either the Mhc or the stam complementation groups. Further experiments confirmed that these genes are required for cell migration in the tracheal air sac primordium. 相似文献
9.
10.
Katarzyna Lepeta Chantal Roubinet Milena Bauer M. Alessandra Vigano Gustavo Aguilar Oguz Kanca Amanda Ochoa-Espinosa Dimitri Bieli Clemens Cabernard Emmanuel Caussinus Markus Affolter 《The Journal of cell biology》2022,221(10)
Reversible protein phosphorylation by kinases controls a plethora of processes essential for the proper development and homeostasis of multicellular organisms. One main obstacle in studying the role of a defined kinase–substrate interaction is that kinases form complex signaling networks and most often phosphorylate multiple substrates involved in various cellular processes. In recent years, several new approaches have been developed to control the activity of a given kinase. However, most of them fail to regulate a single protein target, likely hiding the effect of a unique kinase–substrate interaction by pleiotropic effects. To overcome this limitation, we have created protein binder-based engineered kinases that permit a direct, robust, and tissue-specific phosphorylation of fluorescent fusion proteins in vivo. We show the detailed characterization of two engineered kinases based on Rho-associated protein kinase (ROCK) and Src. Expression of synthetic kinases in the developing fly embryo resulted in phosphorylation of their respective GFP-fusion targets, providing for the first time a means to direct the phosphorylation to a chosen and tagged target in vivo. We presume that after careful optimization, the novel approach we describe here can be adapted to other kinases and targets in various eukaryotic genetic systems to regulate specific downstream effectors. 相似文献