首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   21篇
  2019年   1篇
  2017年   2篇
  2016年   2篇
  2015年   7篇
  2014年   3篇
  2013年   10篇
  2012年   6篇
  2011年   9篇
  2010年   9篇
  2009年   5篇
  2008年   9篇
  2007年   12篇
  2006年   11篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   4篇
  1998年   5篇
  1997年   4篇
  1996年   1篇
  1995年   4篇
  1994年   2篇
  1992年   3篇
  1991年   2篇
  1989年   3篇
  1988年   1篇
  1987年   5篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1979年   3篇
  1977年   2篇
  1974年   1篇
  1958年   1篇
  1952年   1篇
  1948年   1篇
  1947年   1篇
  1945年   1篇
  1944年   1篇
  1943年   1篇
排序方式: 共有154条查询结果,搜索用时 375 毫秒
1.
Teichuronic acid was the major anionic polymer of Bacillus licheniformis NCIB 6346 durign phosphate-limited (P-limited) growth in the chemostat. This polymer was also present in significant quantities when B. licheniformis was grown under carbon-limited (C-limited) or magnesium-limited (Mg-limited) conditions where teichoic acid predominated in the cell wall. However, the cell wall composition was not of significance in protein export and the parameters for the excretion process were found to be environmental. In particular, two types of extracellular proteins were identified: the first type of enzyme, penicillinase, was only weakly catabolite repressed; was maximally synthesized and secreted during P-limited growth; was unaffected by growth in high Na+ media but its production was inhibited by gramicidin. The second type of enzyme, -amylase, was strongly catabolite repressed and its export was markedly inhibited during P-limited growth or in the presence of Na+ or gramicidin. It is noteworthy that the penicillinase carries a glyceride-cysteine modification at its N-terminus whilst the -amylase does not.  相似文献   
2.
Streptococcus mutans Ingbritt was grown in glucose-excess continuous culture to repress the glucose phosphoenolpyruvate phosphotransferase system (PTS) and allow investigation of the alternative glucose process using the non-PTS substrate, (3H) 6-deoxyglucose. After correcting for non-specific adsorption to inactivated cells, the radiolabelled glucose analogue was found to be concentrated approximately 4.3-fold intracellularly by bacteria incubated in 100 mM Tris-citrate buffer, pH 7.0. Mercaptoethanol or KCl enhanced 6-deoxyglucose uptake, enabling it to be concentrated internally by at least 8-fold, but NaCl was inhibitory to its transport. Initial uptake was antagonised by glucose but not 2-deoxyglucose. Evidence that 6-deoxyglucose transport was driven by protonmotive force (p) was obtained by inhibiting its uptake with the protonophores, 2,4-dinitrophenol, carbonylcyanide m-chlorophenylhydrazine, gramicidin and nigericin, and the electrical potential difference () dissipator, KSCN. The membrane ATPase inhibitor, N,N1-dicyclohexyl carbodiimide, also reduced 6-deoxyglucose uptake as did 100 mM lactate. In combination, these two inhibitors completely abolished 6-deoxyglucose transport. This suggests that the driving force for 6-deoxyglucose uptake is electrogenic, involving both the transmembrane pH gradient (pH) and . ATP hydrolysis, catalysed by the ATPase, and lactate excretion might be important contributors to pH.Abbreviations DNP 2,4-dinitrophenol - CCCP carbonylcyanide m-chlorophenylhydrazone - DCCD N,N1-dicyclohyxyl carbodiimide - p protonmotive force - pH transmembrane pH gradient - transmembrane electrical potential difference  相似文献   
3.
4.
A two-stage chemostat model of a plumbing system was developed, with tap water as the sole nutrient source. The model system was populated with a naturally occurring inoculum derived from an outbreak of Legionnaires' disease and containing Legionella pneumophila along with associated bacteria and protozoa. The model system was used to develop biofilms on the surfaces of a range of eight plumbing materials under controlled, reproducible conditions. The materials varied in their abilities to support biofilm development and the growth of L. pneumophila. Elastomeric surfaces had the most abundant biofilms supporting the highest numbers of L. pneumophila CFU; this was attributed to the leaching of nutrients for bacterial growth from the materials. No direct relationship existed between total biofouling and the numbers of L. pneumophila CFU.  相似文献   
5.
6.
The measurement of 24 h urinary free cortisol is used in the investigation of patients with symptoms of hypercortisolism. Many different methods have been published for the measurement of cortisol, but most of these methods involve cumbersome pre-extraction of the cortisol prior to analysis. We have developed a method using in-well protein precipitation which serves to clean up the sample without requiring lengthy sample preparation. A Shimadzu SIL-HT autosampler was used to inject 50 microL of extract onto a Phenomemex Gemini C18 guard column attached to a Waters Xbridge C18 column. The eluant was introduced directly into a Waters Quattro Micro tandem mass spectrometer. The method was found to be linear up to 3448 nmol/L with a lower limit of detection of 5.3 nmol/L. Precision and accuracy were acceptable, and no interference was noted from compounds such as prednisolone or fenofibrate. This assay was compared to a previously published method, which uses solid phase extraction prior to LC-MS/MS analysis. We have developed a simplified, robust assay for the quantitation of urinary free cortisol that will increase the throughput of the assay and avoid the use of neurotoxic solvents such as dichloromethane.  相似文献   
7.
Trophoblast invasion and remodeling of the maternal spiral arteries are required for pregnancy success. Aberrant endothelium–trophoblast crosstalk may lead to preeclampsia, a pregnancy complication that has serious effects on both the mother and the baby. However, our understanding of the mechanisms involved in this pathology remains elementary because the current in vitro models cannot describe trophoblast–endothelium interactions under dynamic culture. In this study, we developed a dynamic three-dimensional (3D) placenta model by bioprinting trophoblasts and an endothelialized lumen in a perfusion bioreactor. We found the 3D printed perfusion bioreactor system significantly augmented responses of endothelial cells by encouraging network formations and expressions of angiogenic markers, cluster of differentiation 31 (CD31), matrix metalloproteinase-2 (MMP2), matrix metalloproteinase-9 (MMP9), and vascular endothelial growth factor A (VEGFA). Bioprinting favored colocalization of trophoblasts with endothelial cells, similar to in vivo observations. Additional analysis revealed that trophoblasts reduced the angiogenic responses by reducing network formation and motility rates while inducing apoptosis of endothelial cells. Moreover, the presence of endothelial cells appeared to inhibit trophoblast invasion rates. These results clearly demonstrated the utility and potential of bioprinting and perfusion bioreactor system to model trophoblast–endothelium interactions in vitro. Our bioprinted placenta model represents a crucial step to develop advanced research approach that will expand our understanding and treatment options of preeclampsia and other pregnancy-related pathologies.  相似文献   
8.
In water microcosm experiments, the survival times of Campylobacter isolates differed by up to twofold, as determined by culturing; this difference increased to fourfold when particular combinations of temperature and oxygenation were used. The mean survival times were much longer at 4 and 10°C (202 and 176 h, respectively) than at 22 and 37°C (43 and 22 h, respectively). The influence of anaerobiosis on survival time was less dramatic and differed considerably between isolates. In a two-stage water distribution model preparation containing a biofilm consisting of standardized autochthonous water microflora, Campylobacter isolates continued to differ in survival time. However, the survival times of cultures were considerably longer in the presence of the autochthonous water microflora (strains CH1 and 9752 survived 700 and 360 h, respectively, at 4°C) than in the sterile microcosms (strains CH1 and 9752 survived 230 and 157 h, respectively). Although increased temperature and oxygenation were generally detrimental to culturability, the interaction of these two factors influenced the two strains examined differently. When the organisms were grown aerobically at 30°C, the survival of the two strains was reversed; aerobiosis decreased the survival time of strain CH1 by 30%, but unexpectedly improved the persistence time of strain 9752 by more than threefold. Persistence times within biofilms were much longer when they were determined by detection methods not involving culturing. Immunofluorescent-antibody staining demonstrated that the pathogen persisted up to the termination of the experiments after 28 and 42 days of incubation at 30 and 4°C, respectively. The specificity of detection within intact biofilms was reduced because of high background fluorescence. However, preliminary studies with a Campylobacter-specific rRNA probe revealed the same extended persistence of the pathogen within the biofilms.  相似文献   
9.
10.
Influenza A virus particles (2 × 106) were inoculated onto copper or stainless steel and incubated at 22°C at 50 to 60% relative humidity. Infectivity of survivors was determined by utilizing a defined monolayer with fluorescent microscopy analysis. After incubation for 24 h on stainless steel, 500,000 virus particles were still infectious. After incubation for 6 h on copper, only 500 particles were active.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号