首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  18篇
  1988年   1篇
  1980年   1篇
  1979年   3篇
  1972年   2篇
  1971年   4篇
  1970年   1篇
  1969年   3篇
  1966年   1篇
  1965年   1篇
  1964年   1篇
排序方式: 共有18条查询结果,搜索用时 0 毫秒
1.
Gibberellin-like substances and an auxin similar to IAA weredetected by bioassays in extracts of flowers of Chrysanthemummorifolium. The activity of these substances was shown to reacha maximum early in the development of the flower when its relativegrowth-rate was at a maximum, and then to decline with the relativegrowth-rate. The leaves of lateral flowering shoots were found to containgibberellins similar to those detected in the flowers whilea different gibberellin, which appeared to decrease in activitywith the age of the shoot, was detected in the stem. An auxinsimilar to indol-3yl-acetic acid (IAA) was also detected inthese stems. Growth-promoting substances were not detected inthe old stems and leaves from the main shoot. Gas-liquid chromatographyrevealed the presence of a number of additional gibberellinsin the flowers. The chemical nature of the growth substances is discussed inrelation to their biological and chromatographic behaviour.  相似文献   
2.
Plants of two cultivars of Callistephus chinensis (Queen ofthe Market and Johannistag) were grown in 8 h of daylight perday with one of the following treatments given during the 16h dark period: (a) darkness—‘uninterrupted night’,(b) I h of light in the middle of the dark period—a ‘nightbreak’, (c) I min of light in every hour of the dark period—‘cycliclighting’, (d) light throughout—‘continuouslight’. The plants receiving uninterrupted dark periods remained compactand rosetted in habit with small leaves, while leaf expansion,stem extension, and flower initiation were promoted in all threeillumination treatments (b, c, d). Although these three treatmentsproduced similar increases in leaf area, continuous light wasthe most effective for the promotion of both stem growth andflower initiation while cyclic lighting was generally more effectivethan a I-h night break. Continuous light also caused more dry matter to be divertedto stems at any given vegetative dry weight and it was shownthat the stem weight ratio of both varieties was correlatedwith stem length.  相似文献   
3.
  总被引:1,自引:0,他引:1  
The size of the apical dome of Chrysanthemum morifolium Ramat.at the transition to inflorescence initiation in continuouslight (long days) was not systematically influenced by eitherthe temperature or the irradiance under which the plants weregrown. It was generally 0.26 mm in diameter and c. 3.6 x 10–3mm3 in volume when the first bract was initiated. The dimensionsof the apical dome of plants in short days were only slightlysmaller at this stage. Similarly, each step in the further developmentof the chrysanthemum inflorescence was associated with a narrowrange of apex sizes, indicating that inflorescence initiationand development are closely related to apex size. Chrysanthemum morifolium Ramat, shoot apex, inflorescence initiation  相似文献   
4.
In earlier work the effects of light intensity over the range31 to 250 J cm–2 day–1 and carbon dioxide concentrationfrom 325 to 900 ppm with 8-h days at 18.3 °C and 16-h nightsat 15.6 °C were described. The present paper is concernedwith three further experiments with light levels up to 375 Jcm–2 day–1 (which corresponds to the daily totalin a glasshouse in southern England in early May or August andthe intensity is approximately that of mid-winter sunshine),carbon dioxide concentration up to 1500 ppm, and day temperaturesof 18.3 to 29.4 °C. Final plant weight was increased by light over the range 125–375J cm–2 day–1 and by carbon dioxide over the range325–900 ppm, with positive interaction between them; thisinteraction was increased by raising the temperature to 23.9°C and somewhat more at 29.4 °C day temperature. Leaf-arearatio and specific leaf area were reduced by increasing eitherlight or carbon dioxide but there was little effect of temperature.Leaf-weight ratios were uniform within experiments but therewere small consistent differences between one experiment andthe other two which also affected leaf-area ratios. Mean unit leaf rate was scarcely affected by day temperatureover the range investigated. There were the usual increasesdue to increased light and carbon dioxide concentration anda consistent difference in absolute value between one experimentand the other two. These differences in mean unit leaf rateare illustrated in detail in the ontogenetic trend of unit leafrate and plant size. Lower unit leaf rates were to a considerableextent compensated for by increased leaf-area ratios in theusual way. Despite the substantial differences in day temperature the specificwater contents (g water g dry weight–1) differed little,showing in the majority of cases higher values in the highertemperature for otherwise similar treatment combinations. Flower development was somewhat delayed at 23.9 °C day temperature,and substantially so at 29.4 °C. Lateral branch length wasincreased at 23.9 °C and excessively so at 29.4 °C.This reveals quite clearly that a temperature optimum for vegetativegrowth may not be the optimum for flowering performance norproduce a desirable plant shape. Despite the marked effects of temperature on rate of flowerdevelopment, the relationship between flower development andthe ratio of flower to total weight was the same for all treatmentcombinations in all three experiments and coincident with thatreported earlier. Gasometric determinations indicated that respiratory loss bythe whole plant was a smaller proportion of net photosyntheticgain at a temperature of 29.4 °C than at 18.3 °C andwas likewise a smaller proportion at 1500 ppm carbon dioxidethan at 325 ppm. If photorespiration of leaves is assumed tobe as great as their dark respiration, the respiratory lossesare in the range of 31–50 per cent of the gross gain.Greater rates of photorespiration would increase the proportionaterespiratory loss.  相似文献   
5.
Rooted cuttings were grown in controlled-environment cabinetsat daily visible light totals of 31, 63, 125, and 250 J cm–28-h day–1 and carbon dioxide concentrations of 325 and600 ppm. The experiment was repeated on another occasion withthe inclusion of a further carbon dioxide level of 900 ppm.A 5-h tungsten night break was used in the first week to delayflower initiation The plants in the various treatment combinationswere sampled by frequent small harvests for leaf area and freshand dry weights of leaf, stem, root, and flower, and also forvarious morphological features. Other growth measures were obtainedby manipulation of the primary data, including the fitting ofprogress curves. Plants were respaced at intervals to minimizemutual shading. There was an increase in total dry-matter production with increasinglight and carbon dioxide, with a small positive interactionbetween them. Plants in one experiment had a somewhat higherunit leaf rate and a lower leaf-area ratio, the latter beingdue to a slightly smaller leaf-weight ratio. The effects ofadditional carbon dioxide were largely accounted for by increasedphotosynthesis. Although there were substantial differencesin specific leaf area between treatment combinations withineach experiment, the leaf-weight ratio was little altered inthe period of vegetative growth. The inverse relationship betweenspecific leaf area and unit leaf rate showed a very similartrend for all combinations of light and carbon dioxide concentration.Leaf area was a linear function of absolute leaf water contentfor all treatment combinations within an experiment, but therewas a small significant difference between occasions. Flower development was extremely delayed in the lowest lightlevel and substantially delayed at the next higher level. Thenumber of leaves below the flower decreased with increasinglight level Flower weight increased with increasing light above63 J cm–2 8-h day–1 and with increasing carbon dioxideconcentration, there being a positive interaction between them The initial weight and leaf area of cuttings differed for thetwo experiments, and although the results on the two occasionswere in the same direction, their magnitudes were different.Some of the discrepancy was eliminated by expressing the variousgrowth measures as functions of plant dry weight, but therewas evidently a difference in the potential for growth of thetwo batches of cuttings. The plants which were initially smallerhad a higher average unit leaf rate which, due to a higher leafwater content, was not offset by a lower leaf area ratio.  相似文献   
6.
A mathematical model of flowering in Chrysanthemum morifoliumRamat. is described which may be used to predict quantitiessuch as the number of primordia initiated by the apex, plastochronduration and apical dome mass before, during and after the transformationof the apical meristem from vegetative to reproductive development.The model assumes that primordial initiation is regulated byan inhibitor present in the apical dome. Within each plastochronthe apical dome grows exponentially, and the inhibitor concentrationdeclines through chemical decay and dilution. When the inhibitorconcentration falls to a critical level a new primordium isinitiated. There is instantaneous production of inhibitor, anda decrease in dome mass corresponding to the mass of the newprimordium. The process continues until the apical dome attainsa particular mass when the first bract primordium is produced.Subsequent primordia compete with the apical dome for substrates,and the specific growth rate of the dome declines with successiveplastochrons. Eventually, the net mass of the dome starts todecline until it is entirely consumed in the production of floralprimordia. Chrysanthemum morifoliumRamat, flowering, primordial initiation  相似文献   
7.
A mathematical model is constructed to describe the morphopneticswitch that occurs when a vegetative plant apex becomes reproductive.The cusp equation from catastrophe theory is modified, and isused to relate primordial size at initiation to apex size. Theresulting equation may be viewed as an equation of state definingthe allowed organizational modes of the shoot apex. The modelsimulates the growth of the apex from the vetative stage toearly reproductive growth, and makes reasonable predictionsabout apex size and growth rate, primordial sizes, and the lengthsof the plastochron. flowering, mathematical model, catastrophe theory, shoot apex  相似文献   
8.
Covered, developing flower buds of Chrysanthemum morifoliumcv. Bright Golden Anne did not atrophy, although their dry weightwas lower than that of uncovered buds at 21, 28, 35 and 42 dafter the start of short days. This reduced dry weight was primarilydue to a reduction in the dry weight of the bracts, which arephotosynthetically active. The reduction in dry weight was notdue to a decrease in the number of bracts or florets or to alag in development of the covered buds. At 49 d the weight ofboth covered and uncovered buds was not significantly different,although the weight of the covered bracts was still reducedcompared with uncovered bracts. At 28 d uncovered buds fixedabout 40 times more 14CO2 than covered buds. Both covered anduncovered buds had the same sink intensity and relative specificactivity, but the first bract had a greater sink intensity andrelative specific activity when covered than when uncovered,owing to photosynthesis by the bract itself. Chrysanthemum morifolium, flower development, assimilate partitioning, light, bract photosynthesis  相似文献   
9.
When CCC was applied as a spray to the leaves of Brassica oleraceaL. (Brussels sprout) grown in pots, plant height and mean internodelength were reduced. The effects appeared more slowly and wereless pronounced than those previously observed when CCC hadbeen applied to the soil; other differences were that root growthwas not inhibited, stem weight was only significantly reducedat the highest rate of application (2 per cent), and stomatalnumber per unit area of lower leaf epidermis was not affected.In common with soil applications, leaf thickness, stem diameter,and the percentage moisture contents of the leaves were allincreased by foliar applications.In a further experiment theprogress of wilting was observed in untreated plants and inplants treated with CCC applied either to the leaves or to thesoil. The rates of water loss and the moisture contents of theleaf laminae of the treated plants, after a period of wilting,were not significantly different from the controls. The treatedplants, however, looked less ‘wilted‘ for the changein angle of the leaf lamina to the stem was less and their leaveswere therefore held more upright.  相似文献   
10.
COCKSHULL  K. E. 《Annals of botany》1966,30(4):791-806
Plants of Callistephus chinensis were grown in eight hours ofdaylight per day and received either uninterrupted dark periodsor dark periods interrupted by one hour of low-intensity light.The growth in area and the accumulation of dry matter was followedfor leaves at different heights of insertion on the stem. Lightinterruption treatment caused more rapid surface expansion ofindividual leaves. The rate of accumulation of dry matter wasalso increased but less in proportion to the increase in areaso that the area per unit weight of leaf material, i.e. thespecific leaf area, was greater. The final areas and dry weightsof leaves were also considerably greater than in the uninterruptednight treatment. When plants were transferred from uninterruptedto interrupted nights, a similar response was obtained fromthose leaves which began to expand rapidly after the commencementof the treatment. The reciprocal transfer into uninterrupted nights immediatelyretarded the rate of leaf expansion and final leaf areas wereless. The rate of accumulation of dry matter was not affectedso rapidly and the area per unit weight of leaf material fellbelow that recorded from leaves which had always received uninterruptednights. Within any one treatment and on any one occasion thespecific leaf area was almost constant, regardless of heightof insertion and therefore also of leaf size and degree of development. It is postulated that a promotor of leaf growth is producedin the light interruption treatment and that this regulatormay increase cell expansion. Transfer to uninterrupted nightsmay halt the synthesis of this regulator and may also lead tothe production of an inhibitor of leaf expansion. Finally, it is concluded from a survey of the literature, that,in general, where a response to photoperiod exists, leaf areais greater in long days than in short days.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号