首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211篇
  免费   16篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   4篇
  2018年   2篇
  2017年   7篇
  2016年   5篇
  2015年   10篇
  2014年   11篇
  2013年   29篇
  2012年   14篇
  2011年   9篇
  2010年   8篇
  2009年   11篇
  2008年   10篇
  2007年   8篇
  2006年   10篇
  2005年   7篇
  2004年   8篇
  2003年   6篇
  2002年   3篇
  2001年   3篇
  2000年   12篇
  1999年   3篇
  1998年   10篇
  1996年   1篇
  1992年   2篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1986年   3篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1981年   4篇
  1980年   1篇
  1978年   1篇
  1975年   3篇
  1969年   1篇
  1967年   1篇
  1957年   1篇
  1932年   1篇
排序方式: 共有227条查询结果,搜索用时 31 毫秒
1.
2.
Myeloperoxidase catalyses the conversion of H2O2 and Cl- to hypochlorous acid (HOCl). It also reacts with O2- to form the oxy adduct (compound III). To determine how O2- affects the formation of HOCl, chlorination of monochlorodimedon by myeloperoxidase was investigated using xanthine oxidase and hypoxanthine as a source of O2- and H2O2. Myeloperoxidase was mostly converted to compound III, and H2O2 was essential for chlorination. At pH 5.4, superoxide dismutase (SOD) enhanced chlorination and prevented formation of compound III. However, at pH 7.8, SOD inhibited chlorination and promoted formation of the ferrous peroxide adduct (compound II) instead of compound III. We present spectral evidence for a direct reaction between compound III and H2O2 to form compound II, and for the reduction of compound II by O2- to regenerate native myeloperoxidase. These reactions enable compound III and compound II to participate in the chlorination reaction. Myeloperoxidase catalytically inhibited O2- -dependent reduction of Nitro Blue Tetrazolium. This inhibition is explained by myeloperoxidase undergoing a cycle of reactions with O2-, H2O2 and O2-, with compounds III and II as intermediates, i.e., by myeloperoxidase acting as a combined SOD/catalase enzyme. By preventing the accumulation of inactive compound II, O2- enhances the activity of myeloperoxidase. We propose that, under physiological conditions, this optimizes the production of HOCl and may potentiate oxidant damage by stimulated neutrophils.  相似文献   
3.
Ascorbate reversibly inhibits catalase, and this inhibition is enhanced and rendered irreversible by the prior addition of copper(II)-bishistidine. In the absence of copper, the inhibition was prevented and reversed by ethanol, but not by superoxide dismutase, benzoate, mannitol, thiourea, desferrioxamine, or DETAPAC. In the presence of the copper complex mannitol, benzoate, and superoxide dismutase still had no effect, but thiourea, desferrioxamine, DETAPAC, or additional histidine decreased the extent of inactivation to that seen in the absence of copper. In the presence of copper, ethanol protected at [ascorbate] less than 1 mM, but was ineffective at [ascorbate] greater than 2 mM, even in the absence of oxygen. Although in the absence of copper, complete removal of oxygen provided full protection against inactivation by ascorbate, this protection was not seen if the catalase was briefly preincubated with H2O2 prior to flushing with nitrogen, or if copper was present. In fact, if copper was present, inactivation was enhanced by the removal of oxygen. Increasing the concentration of oxygen from ambient to 100% slowed the inactivation, whether or not copper was present. It is concluded that the initial reversible inactivation involves reaction with H2O2 to form compound I, followed by one electron reduction of compound I to compound II. In the presence of added copper, the initial (reversible) inactivation allows H2O2 to accumulate sufficiently to permit irreversible inactivation. Since in the presence of copper oxygen is not required, and neither the reversible nor the irreversible inactivation was prevented by conventional scavengers of active forms of oxygen, the inactivation is likely mediated by semidehydroascorbate, and/or it may involve site-specific generation of the damaging intermediates.  相似文献   
4.
5.
Amplification of immunohistochemical markers received considerable attention during the 1980s and 1990s. The amplification approach was largely abandoned following the development of antigen retrieval and reporter amplification techniques, because the latter were incorporated more easily into high throughput automated procedures in industrial and diagnostic laboratories. There remain, however, a number of instances where marker amplification still has much to offer. Consequently, we examined experimentally the utility of an optimized marker amplification technique in diagnostically relevant tissue where either the original signal strength was low or positive sites were visible, but sparsely distributed. Marker amplification in the former case not only improved the visibility of existing positive sites, but also revealed additional sites that previously were undetectable. In the latter case, positive sites were rendered more intense and therefore more easily seen during low magnification examination of large areas of tissue.  相似文献   
6.
The neutrophil enzyme myeloperoxidase (MPO) promotes oxidative stress in numerous inflammatory pathologies by producing hypohalous acids. Its inadvertent activity is a prime target for pharmacological control. Previously, salicylhydroxamic acid was reported to be a weak reversible inhibitor of MPO. We aimed to identify related hydroxamates that are good inhibitors of the enzyme. We report on three hydroxamates as the first potent reversible inhibitors of MPO. The chlorination activity of purified MPO was inhibited by 50% by a 5 nm concentration of a trifluoromethyl-substituted aromatic hydroxamate, HX1. The hydroxamates were specific for MPO in neutrophils and more potent toward MPO compared with a broad range of redox enzymes and alternative targets. Surface plasmon resonance measurements showed that the strength of binding of hydroxamates to MPO correlated with the degree of enzyme inhibition. The crystal structure of MPO-HX1 revealed that the inhibitor was bound within the active site cavity above the heme and blocked the substrate channel. HX1 was a mixed-type inhibitor of the halogenation activity of MPO with respect to both hydrogen peroxide and halide. Spectral analyses demonstrated that hydroxamates can act variably as substrates for MPO and convert the enzyme to a nitrosyl ferrous intermediate. This property was unrelated to their ability to inhibit MPO. We propose that aromatic hydroxamates bind tightly to the active site of MPO and prevent it from producing hypohalous acids. This mode of reversible inhibition has potential for blocking the activity of MPO and limiting oxidative stress during inflammation.  相似文献   
7.
8.
The experiment was organized in a 3×2 factorial arrangement with three dietary fat blends and a basal (20 mg kg?1 diet) or supplemented (220 mg kg?1) level of α-tocopheryl acetate. Dietary vitamin E and monounsaturated to polyunsaturated fatty acid ratio (dietary MUFA/PUFA) affected muscle α-tocopherol concentration (α-tocopherol [log μg g?1]=0.18 (±0.105)+0.0034 (±0.0003)·dietary α-tocopherol [mg kg?1 diet] (P<0.0001)+0.39 (±0.122)·dietary MUFA/PUFA (P<0.0036)). An interaction between dietary α-tocopherol and dietary MUFA/PUFA exists for microsome α-tocopherol concentration (α-tocopherol [log μg g?1]=1.14 (±0.169) (P<0.0001)+0.0056 (±0.00099)·dietary α-tocopherol [mg kg?1 diet] (P<0.0001)+0.54 (±0.206)·dietary MUFA/PUFA (P<0.0131)?0.0033 (±0.0011)·dietary α-tocopherol [mg kg?1)]×dietary MUFA/PUFA (P<0.0067)), and hexanal concentration in meat (hexanal [ng·g?1]=14807.9 (±1489.8)?28.8 (±10.6) dietary α-tocopherol [mg·kg?1] (P<0.01)?8436.6 (±1701.6)·dietary MUFA/PUFA (P<0.001)+24.0 (±11.22)·dietary α-tocopherol·dietary MUFA/PUFA (P<0.0416)). It is concluded that partial substitution of dietary PUFA with MUFA lead to an increase in the concentration of α-tocopherol in muscle and microsome extracts. An interaction between dietary α-tocopherol and fatty acids exists, in which at low level of dietary vitamin E inclusion, a low MUFA/PUFA ratio leads to a reduction in the concentration of α-tocopherol in microsome extracts and a concentration of hexanal in meat above the expected values.  相似文献   
9.
Rhodamines were first produced in the late 19th century, when they constituted a new class of synthetic dyes. These compounds since have been used to color many things including cosmetics, inks, textiles, and in some countries, food products. Certain rhodamine dyes also have been used to stain biological specimens and currently are widely used as fluorescent probes for mitochondria in living cells. The early history and current biological applications are sketched briefly and an account of the ambiguities, complications and confusions concerning dye identification and nomenclature are discussed.  相似文献   
10.
Malachite green was discovered independently by two researchers in Germany in the 19th century and found immediate employment as a dye and a pigment. Subsequently, other uses, such as staining biological specimens, emerged. A much later application was the control of fungal and protozoan infections in fish, for which the dye remains popular, although illegal in many countries owing to a variety of toxicity problems. In solution, malachite green can exist as five different species depending on the pH. The location of the positive charge of the colored cation on a carbon atom or a nitrogen atom is still debated. The original names of this dye, and their origins, are briefly surveyed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号