首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   1篇
  2017年   1篇
  2011年   1篇
  2003年   1篇
  2000年   1篇
  1997年   2篇
  1996年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
排序方式: 共有12条查询结果,搜索用时 15 毫秒
1.
The Triassic ammonoid Czekanowskites rieberi displays a covariation of morphological charac ters, which is rather common in ammonoids. Its morphological spectrum ranges from laterally compressed, involute, weakly ribbed forms to depressed, semiinvolute, strongly ribbed forms. In order to study this covariation, fifteen axially cut specimens have been analyzed by means of image analysis, which allows us to obtain the ontogenetic record of radii, area and perimeter of the individual whorl cross-sections. A logarithmic model of growth has been applied. Our data indicate that, owing to the covariation, the radii from the origin to the venter and to the umbil ical seam of a given whorl section vary inversely in order to maintain the relative position of the center of gravity of the whorl cross-section both throughout the ontogeny of single specimens and within the population. This influences hydrostatic parameters, such as the position of the center of mass and the orientation and stability of the shell. Since the ontogenetic record of the angular length of the body chamber is not known, we have calculated those hydrostatic varia bles using two mutually exclusive assumptions: (1) the angular length of the body chamber was constant throughout ontogeny and (2) the volume of the body chamber grew monotonically with the revolution angle. Fluctuations of the three hydrostatic variables were always less important in the first assumption. In any case, the spectrum of, for example, theoretical orien tations is comparable to those observed in the species of present-day Nautilus. The range of adult body-chamber length observed in C. rieberi is much narrower than the theoretical adult body-chamber length calculated under the second assumption which indicates that a certain control over this parameter existed in the natural population, probably in order to maintain a narrow range in orientation and stability. The excess or deficit in soft-body weight was probably compensated by inverse variations in shell-wall weight. The main conclusion is that, despite the extreme morphological variability, hydrostatic and, possibly, hydrodynamic properties of the population remained within narrow limits.  相似文献   
2.
Checa, Antonio & Westermann, Gerd E. G. 1989 01 15: Segmental growth in planulate ammonites: inferences on costal function. Lethaia , Vol. 22, pp. 95–100. Oslo. ISSN 0024–1164.
In planulate Ammonitina, the directions of costae and their parts coincide with the growth lines, both being accreted in parallel and subtriangular increments, i.e. segments. This implies that the growing margin was consistently corrugated (plicated) parallel to the edge of the peristome. The adventral separation of the ribs caused by the coiling increased with whorl involution and was compensated for by costal division into primaries and secondaries. We propose that costation of the shallow-water, nekto-benthic plandates reduced the stiffness and increased effective thickness of their growing peristome. Ribs functioned (primarily or secondarily) as a protection for the immature, fragile aperture against predators and impacts.□ Ammonite shell, Jurassic, morphology, growth lines, ornamentation, costae .  相似文献   
3.
Deposits composed of aragonite prisms, which were formed afterthe outer shell layer, have been found at the posterior steepslopes of divaricate ribs in two species of Strigilla and anothertwo of Solecurtus. These prisms have their axes oriented perpendicularto the outer shell surface and differ in morphology from fibresof the surface-parallel composite prisms forming the outer shell.They display crystalline features indicating that, unlike crystalsforming the outer shell surface, their growth front was free,unconstrained by the mantle or periostracum. These particulardeposits are called free-growing prisms (FGPs). In these generathe periostracum is clearly not the substrate for biomineralizationand, upon formation, does not adhere to the steep slope of ribs,but detaches at the rib peak and reattaches towards the posterior,just beyond the foot of the posterior scarps of ribs. In thisway, a sinus or open space developed between the internal surfaceof the periostracum and the outer shell surface along each steeprib slope. These spaces could remain filled with extrapallialfluid after the mantle advances beyond that point during shellsecretion. FGPs grow within this microenvironment, out of contactwith the mantle. Other species with divaricate ribs do not developFGPs simply because the periostracum adheres tightly to both ribslopes (which are never so steep as in Solecurtus and Strigilla).FGPs constitute one of the rare cases of remote biomineralizationin which aragonite is produced and direct contact with the mantlenever takes place. (Received 22 November 1999; accepted 20 February 2000)  相似文献   
4.
Cretaceous Vascoceras and Jurassic Lytoceras show colour markings and etched surfaces representing original organic membranes between the septa. The main difference between the formation of ammonite and Nautilus chambers involved the continuous secretion of a gelatinous cameral liquid to support the ammonite mantle when it moved forward. The gel containing cyclically secreted membranes. here named pseudosepta, resembled the intra-cameral structures of the cuttlebone in Sepia. Pseudoscpta are attached to the shell wall in pseudosutures (Pseudoloben) which are particularly visible in the saddles of the septal suture and tend to mimic them. Their shape suggests reconstruction of posterior mantle shape during translocation. Drag-bands (Schleppstreifen) are spiral markings formed by the overlapping pseudosepta along the axial traces of the foliole folds. The chamber of ammonites was formed by a locally muscular mantle in a tripartite cycle: (1) the mantle initially remained attached to the saddles of the completed septal suture while muscular tissue within the umbilical lobes was contracted and rapidly reattached to the side of the lateral saddles; (2) the whole mantle subsequently crept forward by secreting a gelatinous matrix which contained telescoped membranes, with an adhesive function on pseudolobc flanks; (3) the mantle almost ceased to move within the sites of future lobules, but expanded and crept on before forming the mural and 'gutter' ridges of the septum. □ Ammonites, chamber growth, vascoceratids, LYTOCERAS, Nigeria.  相似文献   
5.
6.
Abstract: Pojetaia and Fordilla are the oldest bivalve molluscs, occurring in roughly co‐eval rocks from the Tommotian, and are the only undisputed, well‐known bivalves from the Cambrian. New specimens reveal that Pojetaia had a laminar inner shell microstructure reminiscent of the foliated aragonite of modern monoplacophorans, and the same is true for Fordilla. A similar shell microstructure is seen in Anabarella and Watsonella, providing support for the hypothesis that they are the ancestors of bivalves. Foliated aragonite shares many similarities with nacre, and it may have been the precursor to nacre in bivalves. No cases of undisputed nacre occur in the Cambrian, in spite of much shell microstructure data from molluscs of this time period. Thus, although considered by many to be homologous among molluscs, we conclude that nacre convergently evolved in monoplacophorans, gastropods, bivalves, and cephalopods. This independent origin of nacre appears to have taken place during, or just prior to, the Great Ordovician Biodiversification Event and represents a significant step in the arms race between predators and molluscan prey.  相似文献   
7.
Extensive experimentation has been performed on the planorbid Planorbarius metidjensis in order to determine which mechanism allows the snail to coil its shell regularly. Individuals of this species, like all Planorbidae, are permanently active and secrete their shells while crawling on the substrate. Experiments consisted of attaching weights to either side of the shell (which is carried almost vertically) in an umbilical position; these weights cause the shell to fall towards the substrate on the loaded side. It can be demonstrated, qualitatively and quantitatively, that during further growth the shell tube deviated initially (i.e. within the first half whorl after loading) towards the loaded side. In a later stage, when the animal is able to re-balance the shell-load complex by muscular activity, the shell tube gradually deviates away from the loaded side. This behaviour is to be expected if, after loading, secretion of the shell continued with the aperture parallel to the substrate and forming a constant angle with the direction of growth. The main implication is that in normal conditions the living posture largely controls the correct coiling of the shell. Minor experiments made with another planorbid species, Gyraulus laevis , confirm these conclusions. The growth pattern of planorbids requires that the snail has constant information on the orientation of the shell with respect to the substrate. This is permitted by the particular physiological ecology of this group, members of which, unlike terrestrial gastropods, are permanently active.  相似文献   
8.
Checa, A. 1991 01 15: Sectorial expansion and shell morphogenesis in molluses. Lethaia . Vol. 24, pp. 97–114. Oslo. ISSN 0024–1164.
Any coiled shell can be described as a series of independent helicospirals that join homologous points along the shell surface. The cross-section is therefore seen as a set of points. obtained at its intersection with the helicospirals. Any cross-sectional sector contained between two adjacent points is capable of expanding or contracting during the development and a differential parameter ( L'/L ) has been devised to quantify this expansion rate. The morphometrics so obtained is here called sectorial expansion analysis. This analysis and other related procedures have been applied on cross-sections and apertures in selected Molluxa with the aim of evaluating the incidence of sectorial expansions on shell shape. Those parameters affecting whorl expansion rate and whorl overlapping may be directly modified by sectorial expansions. Changes in the mode of coiling (curvature and torsion) often, but not always, involve sectorial expansions, perhaps as a constructional feature. This approach reveals the advantages and drawbacks of the present analysis as compared to previous theoretical models. Sectorial expansion. morphogenesis. ornamentation, septal suture, coiled shell, gastropods, bivalues. ammonites .  相似文献   
9.
The distribution, morphology and mutual relationships of cameral sheets in ammonoids are revised and re-evaluated. Taking into account recent models of ammonoid septum and chamber formation, three different origins can be attributed to the morphological types of sheets: (1) membranes replicated by the rear mantle (pseudosepta and septal linings), (2) membranes secreted sequentially and/or stretched across the chamber (horizontal membranes and chamber linings) and (3) products of desiccation of the cameral liquid (transverse and siphuncular sheets), presumably a cameral hydrogel. Sheets are always preserved near the siphuncular area, because as the cameral liquid was pumped out from the chamber it became progressively richer in dissolved mucus. In the last-formed drops, or menisci, this mucus adhered to the surface of the previously secreted sheets and, on dehydration, it also replicated the surface of the residual reservoirs, producing desiccation sheets. On the basis of the new evidence, changes in the shape of the rear mantle in Triassic ammonoids can be reconstructed. In general, deformations affected the rounded or bottle-neck saddles, which deflated after detachment of the last-formed septum and reinflated when the position of the next septum was reached. The rest of the elements of the septal epithelium were affected to a much lesser extent. One of the functions of those cameral sheets secreted by the rear body was related to a more efficient transport of the cameral liquid upon decoupling from the siphuncular tube. Ammonoids, Triassic, septum, chamber growth, cameral sheets.  相似文献   
10.
This entomological survey examines the spatial and seasonal distribution patterns of flea species infesting dogs in Spain. Bioclimatic zones covering broad climate and vegetation ranges were surveyed according to size. In a cross‐sectional spatial survey carried out from late May 2013 to mid‐July 2015, 1084 dogs from 42 different locations were examined. A total of 3032 fleas were collected and identified as belonging to the following species: Ctenocephalides felis (Siphonaptera: Pulicidae) (81.7%, 2476 fleas); Ctenocephalides canis (11.4%, 347 fleas); Pulex irritans (Siphonaptera: Pulicidae) (6.9%, 208 fleas), and Echidnophaga gallinacea (Siphonaptera: Pulicidae) (0.03%, one flea). Variables observed to have effects on flea abundance were animal weight, sex, length of hair and habitat. In the seasonal survey conducted from June 2014 to June 2015, 1014 fleas were collected from 239 dogs at 30 veterinary practices across Spain. Peaks in C. felis abundance were observed in early summer and late autumn, whereas high numbers of P. irritans and C. canis were recorded in autumn. Numbers of fleas detected in winter were low overall. Based on these findings, the present study updates the spatial and seasonal distributions of flea species in Spain and assesses the impacts of host and habitat variables on flea infestation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号