首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   15篇
  国内免费   9篇
  2023年   1篇
  2022年   2篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2015年   17篇
  2014年   11篇
  2013年   12篇
  2012年   15篇
  2011年   13篇
  2010年   14篇
  2009年   11篇
  2008年   8篇
  2007年   8篇
  2006年   11篇
  2005年   3篇
  2004年   9篇
  2003年   10篇
  2002年   3篇
  2001年   5篇
  2000年   4篇
  1999年   4篇
  1998年   7篇
  1997年   7篇
  1996年   4篇
  1995年   2篇
  1994年   7篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1982年   2篇
  1981年   3篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1976年   3篇
  1975年   1篇
  1968年   1篇
  1955年   1篇
  1954年   2篇
  1925年   2篇
排序方式: 共有239条查询结果,搜索用时 15 毫秒
1.
Photoactivation of the [3H]dihydrorosaramicin chromophore at a wavelength above 300 nm allows the covalent attachment of the macrolide antibiotic to the bacterial ribosome. Bidimensional electrophoresis shows that the radioactivity is mainly associated with proteins L1, L5, L6, L15, L18, L19, S1, S3, S4, S5 and S9. When photoincorporation of the drug is conducted in the presence of puromycin as effector of [3H]dihydrorosaramicin-binding sites, a decrease in the labeling of most proteins is observed, except for L18 and L19, which are radiolabeled to a larger extent. These results allow us to speculate that L18 and L19 belong to the high-affinity binding site of rosaramicin antibiotic.  相似文献   
2.
3.
4.
Summary We have determined the chromosomal location of the human gene for gamma-glutamyltransferase (GGT). This study was done by in situ hybridization of human metaphase spreads with a rat cDNA probe specific for this enzyme and constructed from two clones previously characterized in our laboratory. The final construct had a 1.6-kb-long insert covering 92% of the coding sequence for GGT. The new insert was also freed of any GC tails introduced for the cDNA cloning, because we observed that these sequences were responsible for a high background. Using this probe for the analysis of 136 human metaphase spreads, we observed a strong specific signal on chromosome 22 at the interface of q111-112 and a minor peak in q131. Thus GGT might represent a new marker for the study of certain diseases which have chromosomal abnormalities at these loci.  相似文献   
5.
6.
The level of gamma-glutamyltranspeptidase (GGT) activity and of its mRNA were determined in the mouse mammary gland during pregnancy, lactation and weaning. The GGT activity, which is very low in the virgin-mouse mammary gland (5 munits/mg of protein), increases progressively during pregnancy (3-fold), reaches its maximum at the onset of lactation (8-fold) and returns rapidly to basal level at weaning. Although no GGT-specific mRNA is detected in the virgin-mouse mammary gland, a single faint band of 2.2 kb in size is found during pregnancy. During lactation, an additional mRNA of 2.4 kb in size appears, and the level of both mRNAs is higher. This high level of mRNA persists during weaning as well. Southern-blot analysis of mouse mammary-gland DNA provides convincing evidence that there is only one gene which codes for the two mRNAs. The present study provides the first evidence for a physiological regulation of the two GGT mRNAs in the same tissue.  相似文献   
7.
gamma-Glutamyl transpeptidase (GGT) genomic sequences were isolated from rat and human libraries using a rat GGT cDNA as a cross-species hybridization probe. Characterization of the human GGT clones by restriction mapping clearly establishes that at least four different GGT genes or pseudogenes are present in the human genome. All the rat genomic clones cover a 12.5-kilobase sequence and exhibit a unique restriction pattern. A precise quantitation of the rat GGT gene copy number by Southern blot analysis demonstrates that this sequence is present as a single copy/rat haploid genome. Therefore, the GGT gene organization is different between rat and human species; this raises the possibility of different regulatory mechanisms in the two species.  相似文献   
8.
9.
L1 retroposons are represented in mice by subfamilies of interspersed sequences of varied abundance. Previous analyses have indicated that subfamilies are generated by duplicative transposition of a small number of members of the L1 family, the progeny of which then become a major component of the murine L1 population, and are not due to any active processes generating homology within preexisting groups of elements in a particular species. In mice, more than a third of the L1 elements belong to a clade that became active approximately 5 Mya and whose elements are > or = 95% identical. We have collected sequence information from 13 L1 elements isolated from two species of voles (Rodentia: Microtinae: Microtus and Arvicola) and have found that divergence within the vole L1 population is quite different from that in mice, in that there is no abundant subfamily of homologous elements. Individual L1 elements from voles are very divergent from one another and belong to a clade that began a period of elevated duplicative transposition approximately 13 Mya. Sequence analyses of portions of these divergent L1 elements (approximately 250 bp each) gave no evidence for concerted evolution having acted on the vole L1 elements since the split of the two vole lineages approximately 3.5 Mya; that is, the observed interspecific divergence (6.7%-24.7%) is not larger than the intraspecific divergence (7.9%-27.2%), and phylogenetic analyses showed no clustering into Arvicola and Microtus clades.   相似文献   
10.
Molecular phylogeny and divergence times of drosophilid species   总被引:32,自引:15,他引:17  
The phylogenetic relationships and divergence times of 39 drosophilid species were studied by using the coding region of the Adh gene. Four genera--Scaptodrosophila, Zaprionus, Drosophila, and Scaptomyza (from Hawaii)--and three Drosophila subgenera--Drosophila, Engiscaptomyza, and Sophophora--were included. After conducting statistical analyses of the nucleotide sequences of the Adh, Adhr (Adh-related gene), and nuclear rRNA genes and a 905-bp segment of mitochondrial DNA, we used Scaptodrosophila as the outgroup. The phylogenetic tree obtained showed that the first major division of drosophilid species occurs between subgenus Sophophora (genus Drosophila) and the group including subgenera Drosophila and Engiscaptomyza plus the genera Zaprionus and Scaptomyza. Subgenus Sophophora is then divided into D. willistoni and the clade of D. obscura and D. melanogaster species groups. In the other major drosophilid group, Zaprionus first separates from the other species, and then D. immigrans leaves the remaining group of species. This remaining group then splits into the D. repleta group and the Hawaiian drosophilid cluster (Hawaiian Drosophila, Engiscaptomyza, and Scaptomyza). Engiscaptomyza and Scaptomyza are tightly clustered. Each of the D. repleta, D. obscura, and D. melanogaster groups is monophyletic. The splitting of subgenera Drosophila and Sophophora apparently occurred about 40 Mya, whereas the D. repleta group and the Hawaiian drosophilid cluster separated about 32 Mya. By contrast, the splitting of Engiscaptomyza and Scaptomyza occurred only about 11 Mya, suggesting that Scaptomyza experienced a rapid morphological evolution. The D. obscura and D. melanogaster groups apparently diverged about 25 Mya. Many of the D. repleta group species studied here have two functional Adh genes (Adh-1 and Adh-2), and these duplicated genes can be explained by two duplication events.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号