首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1843篇
  免费   129篇
  国内免费   2篇
  2023年   3篇
  2022年   15篇
  2021年   35篇
  2020年   19篇
  2019年   22篇
  2018年   35篇
  2017年   34篇
  2016年   57篇
  2015年   116篇
  2014年   106篇
  2013年   143篇
  2012年   158篇
  2011年   152篇
  2010年   95篇
  2009年   92篇
  2008年   121篇
  2007年   135篇
  2006年   105篇
  2005年   111篇
  2004年   108篇
  2003年   80篇
  2002年   74篇
  2001年   16篇
  2000年   17篇
  1999年   17篇
  1998年   22篇
  1997年   8篇
  1996年   16篇
  1995年   5篇
  1994年   7篇
  1993年   2篇
  1992年   5篇
  1991年   5篇
  1990年   5篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
  1984年   4篇
  1982年   2篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1973年   2篇
  1971年   1篇
  1966年   1篇
排序方式: 共有1974条查询结果,搜索用时 15 毫秒
1.
2.
The relationship between chronic inflammation and cancer is well known. The inflammation increases the permeability of blood vessels and consequently elevates pressure in the interstitial tissues. However, there have been only a few reports on the effects of hydrostatic pressure on cultured cells, and the relationship between elevated hydrostatic pressure and cell properties related to malignant tumors is less well understood. Therefore, we investigated the effects of hydrostatic pressure on the cultured epithelial cells seeded on permeable filters. Surprisingly, hydrostatic pressure from basal to apical side induced epithelial stratification in Madin-Darby canine kidney (MDCK) I and Caco-2 cells, and cavities with microvilli and tight junctions around their surfaces were formed within the multi-layered epithelia. The hydrostatic pressure gradient also promoted cell proliferation, suppressed cell apoptosis, and increased transepithelial ion permeability. The inhibition of protein kinase A (PKA) promoted epithelial stratification by the hydrostatic pressure whereas the activation of PKA led to suppressed epithelial stratification. These results indicate the role of the hydrostatic pressure gradient in the regulation of various epithelial cell functions. The findings in this study may provide clues for the development of a novel strategy for the treatment of the carcinoma.  相似文献   
3.
Cancer cell motility is a key phenomenon regulating invasion and metastasis. Focal adhesion kinase (FAK) plays a major role in cellular adhesion and metastasis of various cancers. The relationship between dietary supplementation of calcium and colon cancer has been extensively investigated. However, the effect of calcium (Ca2+) supplementation on calpain-FAK-motility is not clearly understood. We sought to identify the mechanism of FAK cleavage through Ca2+ bound lactate (CaLa), its downstream signaling and role in the motility of human colon cancer cells. We found that treating HCT116 and HT-29 cells with CaLa immediately increased the intracellular Ca2+ (iCa2+) levels for a prolonged period of time. Ca2+ influx induced cleavage of FAK into an N-terminal FAK (FERM domain) in a dose-dependent manner. Phosphorylated FAK (p-FAK) was also cleaved in to its p-N-terminal FAK. CaLa increased colon cancer cells motility. Calpeptin, a calpain inhibitor, reversed the effects of CaLa on FAK and pFAK cleavage in both cancer cell lines. The cleaved FAK translocates into the nucleus and modulates p53 stability through MDM2-associated ubiquitination. CaLa-induced Ca2+ influx increased the motility of colon cancer cells was mediated by calpain activity through FAK and pFAK protein destabilization. In conclusion, these results suggest that careful consideration may be given in deciding dietary Ca2+ supplementation to patient undergoing treatment for metastatic cancer.  相似文献   
4.
5.
Two kinds of storage proteins (SP-1, SP-2) were confirmed in hemolymph and fat body of Pieris rapae during metamorphosis. Both proteins were present in high concentrations in the hemolymph during the last larval instar. Hemolymph concentrations of SP-1 and SP-2 dropped after pupation as the proteins were being deposited in fat bodies. SP-2 is present in a larger amount than SP-1. Detailed studies on storage proteins determined their properties, mode of synthesis, and accumulation in the fat body. SP-1 has a molecular weight of 500,000 and consists of one type of subunit (Mr 77,000), while SP-2 has a molecular weight of 460,000 and is composed of two types of subunits (Mr 80,000 and 69,000). The pl values of SP-1 and SP-2 were determined to be 6.97 and 7.06, respectively. Fat body cells from 1-day-old fifth instar larvae synthesized storage proteins in large amounts, whereas those from late prepupae exhibited high protein sequestration. Proteins taken up in fat body accumulated in dense granules during the pupal stage but sharply decreased at the adult stage. Morphological changes in the fat body tissues were observed during the larval-pupal transformation; the nuclei of fat body cells became irregularly shaped, and the boundaries between cells seemed to be obscure. Synthesis, storage, or degradation of storage proteins in fat body during development is closely associated with morphological changes in the tissues.  相似文献   
6.
Summary For the secretion of human lipocortin-1 (LC-1) in yeast, a expression and secretion vector was constructed by using the promoter and signal sequence of glucoamylase gene (STA1) of Saccharomyces diastaticus. After the cDNA of human LC-1 was ligated with the secretion vector, the resulting hybrid plasmid was transformed into S. diastaticus. When the recombinant S. diastaticus was cultivated in YPD medium, LC-1 was expressed and secreted into the extracellular medium, yielding LC-1 protein at a concentration of 2.5 g/mL.  相似文献   
7.
The silkworm Bombyx mori L. is a model organism of the order Lepidoptera. Understanding the mechanism of pesticide resistance in silkworms is valuable for Lepidopteran pest control. In this study, comparative metabolomics was used to analyze the metabolites of 2 silkworm strains with different pesticide resistance levels at 6, 12, and 24 h after feeding with fenpropathrin. Twenty-six of 27 metabolites showed significant differences after fenpropathrin treatment and were classified into 6 metabolic pathways: glycerophospholipid metabolism, sulfur metabolism, glycolysis, amino acid metabolism, the urea cycle, and the tricarboxylic acid (TCA) cycle. After analyzing the percentage changes in the metabolic pathways at the 3 time points, sulfur metabolism, glycolysis, and the TCA cycle showed significant responses to fenpropathrin. Confirmatory experiments were performed by feeding silkworms with key metabolites of the 3 pathways. The combination of iron(II) fumarate + folic acid (IF-FA) enhanced fenpropathrin resistance in silkworms 6.38 fold, indicating that the TCA cycle is the core pathway associated with resistance. Furthermore, the disruption of several energy-related metabolic pathways caused by fenpropathrin was shown to be recovered by IF-FA in vitro. Therefore, IF-FA may have a role in boosting silkworm pesticide resistance by modulating the equilibrium between the TCA cycle and its related metabolic pathways.  相似文献   
8.
The 12 transmembrane alpha helices (TMHs) of human erythrocyte glucose transporter were individually cut by pepsin digestion as membrane-bound 2.5-3.5-kDa peptide fragments. Radiation-induced chemical degradation of these fragments showed an average target size of 34 kDa. This is 10-12 x larger than the average size of an individual TMH, demonstrating that a significant energy transfer occurs among these TMHs in the absence of covalent linkage. Heating this TMH preparation at 100 degrees C for 15 min reduced the target size to 5 kDa or less, suggesting that the noncovalent energy transfer requires specific helix-helix interactions. Purified phospholamban, a small (6-kDa) integral membrane protein containing a single TMH, formed a pentameric assembly in sodium dodecyl sulfate. The chemical degradation target size of this phospholamban pentamer was 5-6 kDa, illustrating that not all integral membrane protein assemblies permit intersubunit energy transfer. These findings together with other published observations suggest strongly that significant noncovalent energy transfer can occur within the tertiary and quaternary structure of membrane proteins and that as yet undefined proper molecular interactions are required for such covalent energy transfer. Our results with pepsin-digested glucose transporter also illustrate the importance of the interhelical interaction as a predominating force in maintaining the tertiary structure of a transmembrane protein.  相似文献   
9.
Summary A simple experimental method is devised to determine the fraction of plasmid-harboring cells in a bioprocess employing recombinant mammalian cells. The fraction of plasmid-harboring cells decreased as serum content in the growth medium decreased. The relatively higher increase in the generation time of the plasmid-harboring cell was primarily responsible for this decrease. The mathematical expression obtained for this fraction in terms of the two parameters, i.e. the generation time ratio and the plasmid-loss probability, could represent the experimental data extremely well. The numerical values of these parameters could show the inherent insight of the system. It was found that the data plot against time can draw us to a misleading conclusion of the absence of the effect of serum concentration.  相似文献   
10.
The relationship between age-related resistance of peper plants to Phytophthora capsici and contents of carbohydrates, amino acids, phenolics and mineral nutrients in pepper stems was studied using two pepper cultivars, Hanbyul (susceptible) and Kingkun (resistant). With increasing age of pepper plants, the two cultivars, which differ in their susceptibility to Phytophthora blight, became gradually resistant to the disease. The cultivar Kingkun distinctly showed the age-related resistance to Phytophthora blight at the second branch stage. The weight of dry matter in healthy stems of pepper plants at the second branch stage was twice that at the six leaf stage. The resistant cultivar Kingkun contained lower levels of fructose, glucose and sucrose in stems than the susceptible cultivar Hanbyul at the different developmental stages. No consistent differences between the developmental stages of the plants were recognized with regard to their glucose content. However, the contents of fructose and sucrose in the cultivar Hanbyul greatly increased at the second branch stage. The levels of inositol reduced in both pepper cultivars during plant development. In view of the fact that there were only slight changes in the amount of total amino acids, it seems unlikely that there is a relationship between the amino acid metabolism and the retardation of Phytophthora infection during plant development. The amounts of total phenolic compounds in pepper stems were relatively low at the later growth stages of the plants and also in the resistant cultivar Kingkun. The contents of macroelemental nutrients such as nitrogen, phosphorus, potassium, calcium and magnesium were drastically reduced in pepper stems at the later plant growth stage. No significant differences between the cultivars or the plant growth stages were found in the silicon and microelemental nutrients such as sodium, iron, zinc and manganese. These results suggest that the expression of age-related resistance of pepper plants may be due to the morphological and nutritional changes in tissues of pepper stems during ageing, i.e. the pronounced increase in weight of dry matter, the significant decrease in amounts of mineral nutrients such as nitrogen, phosphorus, potassium, calcium and magnesium, and the tow contents of fructose, glucose and sucrose in the stem tissues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号