首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   2篇
  2023年   5篇
  2022年   4篇
  2021年   1篇
  2018年   2篇
  2017年   2篇
  2015年   1篇
  2014年   2篇
  2012年   1篇
  2011年   2篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
The differentiation of human mesenchymal stem cells (hMSCs) into neural cells in vitro provides a potential tool to be utilized for cell therapy of neurodegenerative disorders. Although previous studies repeated different protocols for the induction of neural cells from hMSCs in vitro, the results were not in complete agreement. In this study, we have attempted to compare three of these neural induction methods; retinoic acid (RA) treatment, RA treatment in serum reduced conditions, and treatment using other chemical compounds (dimethyl sulfoxide and potassium chloride) along with RA by real-time cell analysis and immunofluorescent staining of neural markers. RA treatment led to a slow progression of cells into neural-like morphology with the expression of neural protein neurofilament whereas reducing serum during RA treatment caused a much more extended differentiation process. Additionally, neural-like morphology was persistent in the later periods of differentiation in RA treatment. On the other hand, chemical induction caused cell shrinkages mimicking neural-like morphology in a short time and loss of this morphology along with increased cell death in later periods. Among the three methods compared, RA treatment was the most reliable one in terms of stability of differentiation and neural protein expressions.  相似文献   
2.
Although COVID-19 affects mainly lungs with a hyperactive and imbalanced immune response, gastrointestinal and neurological symptoms such as diarrhea and neuropathic pains have been described as well in patients with COVID-19. Studies indicate that gut–lung axis maintains host homeostasis and disease development with the association of immune system, and gut microbiota is involved in the COVID-19 severity in patients with extrapulmonary conditions. Gut microbiota dysbiosis impairs the gut permeability resulting in translocation of gut microbes and their metabolites into the circulatory system and induce systemic inflammation which, in turn, can affect distal organs such as the brain. Moreover, gut microbiota maintains the availability of tryptophan for kynurenine pathway, which is important for both central nervous and gastrointestinal system in regulating inflammation. SARS-CoV-2 infection disturbs the gut microbiota and leads to immune dysfunction with generalized inflammation. It has been known that cytokines and microbial products crossing the blood-brain barrier induce the neuroinflammation, which contributes to the pathophysiology of neurodegenerative diseases including neuropathies. Therefore, we believe that both gut–lung and gut–brain axes are involved in COVID-19 severity and extrapulmonary complications. Furthermore, gut microbial dysbiosis could be the reason of the neurologic complications seen in severe COVID-19 patients with the association of dysbiosis-related neuroinflammation. This review will provide valuable insights into the role of gut microbiota dysbiosis and dysbiosis-related inflammation on the neuropathy in COVID-19 patients and the disease severity.  相似文献   
3.
Owing to ever-increasing bacterial and fungal drug resistance, we attempted to develop novel antitubercular and antimicrobial agents. For this purpose, we developed some new fluorine-substituted chalcone analogs (3, 4, 9–15, and 20–23) using a structure–activity relationship approach. Target compounds were evaluated for their antitubercular efficacy against Mycobacterium tuberculosis H37Rv and antimicrobial activity against five common pathogenic bacterial and three common fungal strains. Three derivatives (3, 9, and 10) displayed significant antitubercular activity with IC50 values of ≤16,760. Compounds derived from trimethoxy substituent scaffolds with monofluoro substitution on the B ring of the chalcone structure exhibited superior inhibition activity compared to corresponding hydroxy analogs. In terms of antimicrobial activity, most compounds (3, 9, 1214, and 23) exhibited moderate to potent activity against the bacteria, and the antifungal activities of compounds 3, 13, 15, 20, and 22 were comparable to those of reference drugs ampicillin and fluconazole.  相似文献   
4.
The pathophysiological mechanism behind the link between antipsychotic drugs and sexual dysfunction is still unknown. The goal of this research is to compare the potential effects of antipsychotics on the male reproductive system. Fifty rats were randomly assigned into the five groups indicated: Control, Haloperidol, Risperidone, Quetiapine and Aripiprazole. Sperm parameters were significantly impaired in all antipsychotics-treated groups. Haloperidol and Risperidone significantly decreased the level of testosterone. All antipsychotics had significantly reduced inhibin B level. A significant reduction was observed in SOD activity in all antipsychotics-treated groups. While GSH levels diminished, MDA levels were rising in the Haloperidol and Risperidone groups. Also, the GSH level was significantly elevated in the Quetiapine and Aripiprazole groups. By causing oxidative stress and altering hormone levels, Haloperidol and Risperidone are damaging to male reproductivity. This study represents useful starting point for exploring further aspects of the underlying mechanisms reproductive toxicity of antipsychotics.  相似文献   
5.
Lactobacilli have been associated with a variety of immunomodulatory effects and some of these effects have been related to changes in gastrointestinal microbiota. However, the relationship between probiotic dose, time since probiotic consumption, changes in the microbiota, and immune system requires further investigation. The objective of this study was to determine if the effect of Lactobacillus casei 32G on the murine gastrointestinal microbiota and immune function are dose and time dependent. Mice were fed L. casei 32G at doses of 106, 107, or 108 CFU/day/mouse for seven days and were sacrificed 0.5h, 3.5h, 12h, or 24h after the last administration. The ileum tissue and the cecal content were collected for immune profiling by qPCR and microbiota analysis, respectively. The time required for L. casei 32G to reach the cecum was monitored by qPCR and the 32G bolus reaches the cecum 3.5h after the last administration. L. casei 32G altered the cecal microbiota with the predominance of Lachnospiraceae IS, and Oscillospira decreasing significantly (p < 0.05) in the mice receiving 108 CFU/mouse 32G relative to the control mice, while a significant (p < 0.05) increase was observed in the prevalence of lactobacilli. The lactobacilli that increased were determined to be a commensal lactobacilli. Interestingly, no significant difference in the overall microbiota composition, regardless of 32G doses, was observed at the 12h time point. A likely explanation for this observation is the level of feed derived-nutrients resulting from the 12h light/dark cycle. 32G results in consistent increases in Clec2h expression and reductions in TLR-2, alpha-defensins, and lysozyme. Changes in expression of these components of the innate immune system are one possible explanation for the observed changes in the cecal microbiota. Additionally, 32G administration was observed to alter the expression of cytokines (IL-10rb and TNF-α) in a manner consistent with an anti-inflammatory response.  相似文献   
6.
New blood vessel formation (angiogenesis) is one of the most important processes required for functional tissue formation. Induction of angiogenesis is usually triggered by growth factors released by cells. Glycosaminoglycans (e.g., heparan sulphates) in the extracellular matrix aid in proper functioning of these growth factors. Therefore, exogeneous heparin or growth factors were required for promoting angiogenesis in previous regenerative medicine studies. Here we report for the first time induction of angiogenesis by a synthetic nanofibrous peptide scaffold without the addition of any exogenous growth factors or heparin. We designed and synthesized a self-assembling peptide amphiphile molecule that is functionalized with biologically active groups to mimic heparin. Like heparin, this molecule has the ability to interact with growth factors and effectively enhance their bioactivity. The nanofibers formed by these molecules were shown to form a 3D network mimicking the structural proteins in the extracellular matrix. Because of heparin mimicking capabilities of the peptide nanofibers, angiogenesis was induced without the addition of exogenous growth factors in vitro. Bioactive interactions between the nanofibers and the growth factors enabled robust vascularization in vivo as well. Heparin mimetic peptide nanofibers presented here provide new opportunities for angiogenesis and tissue regeneration by avoiding the use of heparin and exogenous growth factors. The synthetic peptide nanofiber scaffolds enriched with proper chemical functional groups shown in this study can be used to induce various desired physiological responses for tissue regeneration.  相似文献   
7.
Tropical theileriosis is a disease caused by infection with an apicomplexan parasite, Theileria annulata, and giving rise to huge economic losses. In recent years, parasite resistance has been reported against the most effective antitheilerial drug used for the treatment of this disease. This emphasizes the need for alternative methods of treatment. Enolase is a key glycolytic enzyme and can be selected as a macromolecular target of therapy of tropical theileriosis. In this study, an intron sequence present in T. annulata enolase gene was removed by PCR-directed mutagenesis, and the gene was first cloned into pGEM-T Easy vector and then subcloned into pLATE31 vector, and expressed in Escherichia coli cells. The enzyme was purified by affinity chromatography using Ni–NTA agarose column. Steady-state kinetic parameters of the enzyme were determined using GraFit 3.0. High quantities (~65 mg/l of culture) of pure recombinant T. annulata enolase have been obtained in a higly purified form (>95 %). Homodimer form of purified protein was determined from the molecular weights obtained from a single band on SDS-PAGE (48 kDa) and from size exclusion chromatography (93 kDa). Enzyme kinetic measurements using 2-PGA as substrate gave a specific activity of ~40 U/mg, K m: 106 μM, kcat: 37 s?1, and k cat/K m: 3.5 × 105 M?1 s?1. These values have been determined for the first time from this parasite enzyme, and availability of large quantities of enolase enzyme will facilitate further kinetic and structural characterization toward design of new antitheilerial drugs.  相似文献   
8.
Wound healing is a process getting affected by internal and external factors and might be interrupted by infections. To overcome infections during wound healing, novel antibacterial agents such as antimicrobial peptides have gained popularity because of the rising antibiotic resistance. Therefore, in this study, a three-dimensional polymeric scaffold was designed for the controlled release of HF-18 peptide, with the contribution of hyaluronic acid, chondroitin sulfate, and chitosan polymers with the crosslinker genipin. The obtained scaffold structure (OPT) was found to have interconnected pores, was pH-responsive and swelled more in acidic conditions (5446.5% at pH: 5.0). It was observed that HF-18-loaded OPT (P-OPT) was able to release HF-18 peptide both in acidic and neutral conditions in a controlled release manner. This study also demonstrated that both OPT and P-OPT were biocompatible and promoted L929 cell attachment and migration. Antimicrobial activity assessments demonstrated that P-OPT was effectively bactericidal on Staphylococcus aureus and methicillin-resistant S. aureus. Moreover, OPT produced a synergistic effect on the antimicrobial activity of HF-18 peptide, as P-OPT showed activity below the reported MIC value. As a result, OPT is considered a promising scaffold as a carrier for HF-18 for wound healing.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号