首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  2021年   1篇
  2020年   1篇
  2014年   1篇
  2012年   1篇
  2010年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  1984年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
BACKGROUND: A small proportion of patients suffering from chronic active gastritis are diagnosed with gastric Helicobacter species other than Helicobacter pylori. Circumstantial evidence has suggested that these bacteria, also referred to as "Helicobacter heilmannii"-like organisms (HHLO), may be transmitted through animals. The isolation of a Helicobacter bizzozeronii strain from a human patient confirmed this hypothesis. It was the aim of the present study to assess the presence of animal Helicobacter species and H. pylori in humans infected with HHLO, as diagnosed by histology. METHODS: Paraffin-embedded gastric biopsy specimens of 108 HHLO-infected patients (42 women and 66 men) from three clinical centers were screened for the presence of animal gastric Helicobacter species by polymerase chain reaction (PCR), using assays targeting the 16S rDNA region of the three known canine and feline helicobacters (H. bizzozeronii, H. salomonis and H. felis), "Candidatus H. suis", and "Candidatus H. bovis". In addition, the presence of H. pylori was evaluated by multiplex PCR analysis. RESULTS: In 63.4% of the stomachs (64/101) classification of the Helicobacter infection into the above mentioned groups was achieved. Non-pylori Helicobacter species commonly colonizing the stomachs of cats and dogs were found in 48.5% (49/101) of the patients. Fourteen (13.9%) samples tested positive for "Candidatus H. suis", and "Candidatus H. bovis" was demonstrated in 1 (0.9%) patient. The presence of H. pylori was established in 13 patients (12.9%). Eleven stomachs (10.9%) were infected with at least two different Helicobacter species. CONCLUSIONS: This study identifies animal Helicobacter species in the stomach of a large series of HHLO-infected patients, which may have clinical implications in a subset of patients with gastric disease.  相似文献   
2.
Ryu J  Liu L  Wong TP  Wu DC  Burette A  Weinberg R  Wang YT  Sheng M 《Neuron》2006,49(2):175-182
Dendritic spines show rapid motility and plastic morphology, which may mediate information storage in the brain. It is presently believed that polymerization/depolymerization of actin is the primary determinant of spine motility and morphogenesis. Here, we show that myosin IIB, a molecular motor that binds and contracts actin filaments, is essential for normal spine morphology and dynamics and represents a distinct biophysical pathway to control spine size and shape. Myosin IIB is enriched in the postsynaptic density (PSD) of neurons. Pharmacologic or genetic inhibition of myosin IIB alters protrusive motility of spines, destabilizes their classical mushroom-head morphology, and impairs excitatory synaptic transmission. Thus, the structure and function of spines is regulated by an actin-based motor in addition to the polymerization state of actin.  相似文献   
3.
The protein-tyrosine kinase Pyk2/CAKbeta/CADTK is a key activator of Src in many cells. At hippocampal synapses, induction of long term potentiation requires the Pyk2/Src signaling pathway, which up-regulates the activity of N-methyl-d-aspartate-type glutamate receptors. Because localization of protein kinases close to their substrates is crucial for effective phosphorylation, we investigated how Pyk2 might be recruited to the N-methyl-d-aspartate receptor complex. This interaction is mediated by PSD-95 and its homolog SAP102. Both proteins colocalize with Pyk2 at postsynaptic dendritic spines in the cerebral cortex. The proline-rich regions in the C-terminal half of Pyk2 bind to the SH3 domain of PSD-95 and SAP102. The SH3 and guanylate kinase homology (GK) domain of PSD-95 and SAP102 interact intramolecularly, but the physiological significance of this interaction has been unclear. We show that Pyk2 effectively binds to the Src homology 3 (SH3) domain of SAP102 only when the GK domain is removed from the SH3 domain. Characterization of PSD-95 and SAP102 as adaptor proteins for Pyk2 fills a critical gap in the understanding of the spatial organization of the Pyk2-Src signaling pathway at the postsynaptic site and reveals a physiological function of the intramolecular SH3-GK domain interaction in SAP102.  相似文献   
4.
Coxiella burnetii is an obligate intracellular bacterial pathogen responsible for severe worldwide outbreaks of the zoonosis Q fever. The remarkable resistance to environmental stress, extremely low infectious dose and ease of dissemination, contributed to the classification of C. burnetii as a class B biothreat. Unique among intracellular pathogens, C. burnetii escapes immune surveillance and replicates within large autophagolysosome‐like compartments called Coxiella‐containing vacuoles (CCVs). The biogenesis of these compartments depends on the subversion of several host signalling pathways. For years, the obligate intracellular nature of C. burnetii imposed significant experimental obstacles to the study of its pathogenic traits. With the development of an axenic culture medium in 2009, C. burnetii became genetically tractable, thus allowing the implementation of mutagenesis tools and screening approaches to identify its virulence determinants and investigate its complex interaction with host cells. Here, we review the key advances that have contributed to our knowledge of C. burnetii pathogenesis, leading to the rise of this once‐neglected pathogen to an exceptional organism to study the intravacuolar lifestyle.  相似文献   
5.
The energy equivalent of plasma lactate production (ELAp) represents the amount of energy that can be derived from the anaerobic glycolysis per kg body weight when the peak plasma lactate concentration (LAp) after exercise increases by 1 mM. ELAp has been calculated from the relationship between the oxygen deficit (Do2) and LAp in 32 subjects. LAp and oxygen uptake measurements were made during constant speed supramaximal running until exhaustion or during the course of constant-speed supramaximal runs of different duration interrupted by 8- to 10- min resting periods. The relationship between Do2 and LAp is described by a linear equation where the slope is equal to ELAp. This equation is: Do2 = 12.3 + 2.4 LAp (r = 0.958; P less than 0.001), where Do2 is expressed in ml O2/kg and LAp in mmol/litre (mM). These findings validate LAp measurements as an index of the anaerobic metabolism during supramaximal running.  相似文献   
6.
The vanilloid receptor VR1 (TRPV1) is a temperature- and capsaicin-sensitive cation channel expressed by a class of primary afferents involved in nociception. To confirm the hypothesis that VR1-positive primary afferents are glutamatergic and contact spinal neurons that express the main classes of ionotropic glutamate receptors, we performed multiple immunofluorescent staining for VR1 and the glutamate transporter VGLUT2 (a specific marker for glutamatergic transmission) or AMPA and NMDA receptor subunits. VR1-positive cells in the dorsal root ganglion and boutons of their central afferent fibers in the dorsal horn expressed VGLUT2, and the latter contacted AMPA- or NMDA receptor-positive perikarya. Based on our previous observations of preferential targeting of VR1-positive primary afferents to spinal neurons that express the neurokinin receptor NK1 (Hwang et al., 2003), we further quantified the frequency of termination of VR1-positive afferents onto NK1-positive neurons co-expressing glutamate receptors. A larger fraction of NK1/NMDA receptors-positive than NK1/AMPA receptors-positive sites were contacted by VR1-positive boutons. We conclude that VR1-positive primary afferents in the rat use glutamate as neurotransmitter and contact postsynaptic sites that co-express NK1 and ionotropic glutamate receptors.  相似文献   
7.
8.
Angelman syndrome (AS) is a neurodevelopmental disorder caused by loss of the maternally inherited allele of UBE3A. AS model mice, which carry a maternal Ube3a null mutation (Ube3a(m-/p+)), recapitulate major features of AS in humans, including enhanced seizure susceptibility. Excitatory neurotransmission onto neocortical pyramidal neurons is diminished in Ube3a(m-/p+) mice, seemingly at odds with enhanced seizure susceptibility. We show here that inhibitory drive onto neocortical pyramidal neurons is more severely decreased in Ube3a(m-/p+) mice. This inhibitory deficit follows the loss of excitatory inputs and appears to arise from defective presynaptic vesicle cycling in multiple interneuron populations. In contrast, excitatory and inhibitory synaptic inputs onto inhibitory interneurons are largely normal. Our results indicate that there are neuron type-specific synaptic deficits in Ube3a(m-/p+) mice despite the presence of Ube3a in all neurons. These deficits result in excitatory/inhibitory imbalance at cellular and circuit levels and may contribute to seizure susceptibility in AS.  相似文献   
9.
Central noradrenergic signalling mediates arousal and facilitates learning through unknown molecular mechanisms. Here, we show that the β2‐adrenergic receptor (β2AR), the trimeric Gs protein, adenylyl cyclase, and PKA form a signalling complex with the AMPA‐type glutamate receptor subunit GluR1, which is linked to the β2AR through stargazin and PSD‐95 and their homologues. Only GluR1 associated with the β2AR is phosphorylated by PKA on β2AR stimulation. Peptides that interfere with the β2AR–GluR1 association prevent this phosphorylation of GluR1. This phosphorylation increases GluR1 surface expression at postsynaptic sites and amplitudes of EPSCs and mEPSCs in prefrontal cortex slices. Assembly of all proteins involved in the classic β2AR–cAMP cascade into a supramolecular signalling complex and thus allows highly localized and selective regulation of one of its major target proteins.  相似文献   
10.
NMDA-type glutamate receptors play a critical role in the activity-dependent development and structural remodeling of dendritic arbors and spines. However, the molecular mechanisms that link NMDA receptor activation to changes in dendritic morphology remain unclear. We report that the Rac1-GEF Tiam1 is present in dendrites and spines and is required for their development. Tiam1 interacts with the NMDA receptor and is phosphorylated in a calcium-dependent manner in response to NMDA receptor stimulation. Blockade of Tiam1 function with RNAi and dominant interfering mutants of Tiam1 suggests that Tiam1 mediates effects of the NMDA receptor on dendritic development by inducing Rac1-dependent actin remodeling and protein synthesis. Taken together, these findings define a molecular mechanism by which NMDA receptor signaling controls the growth and morphology of dendritic arbors and spines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号