首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   261篇
  免费   17篇
  2023年   5篇
  2022年   6篇
  2021年   15篇
  2020年   10篇
  2019年   13篇
  2018年   17篇
  2017年   11篇
  2016年   14篇
  2015年   15篇
  2014年   22篇
  2013年   21篇
  2012年   19篇
  2011年   19篇
  2010年   20篇
  2009年   8篇
  2008年   11篇
  2007年   9篇
  2006年   16篇
  2005年   10篇
  2004年   7篇
  2003年   4篇
  2002年   4篇
  1997年   1篇
  1965年   1篇
排序方式: 共有278条查询结果,搜索用时 15 毫秒
1.
Protoplasma - Watermelon and melon are members of the Cucurbitaceae family including economically significant crops in the world. The expansin protein family, which is one of the members of the...  相似文献   
2.
Aluminum is an abundant metal in the earth’s crust that turns out to be toxic in acidic environments. Many plants are affected by the presence of aluminum at the whole plant level, at the organ level, and at the cellular level. Tobacco as a cash crop (Nicotiana tabacum L.) is a widely cultivated plant worldwide and is also a good model organism for research. Although there are many articles on Al-phytotoxicity in the literature, reviews on a single species that are economically and scientifically important are limited. In this article, we not only provide the biology associated with tobacco Al-toxicity, but also some essential information regarding the effects of this metal on other plant species (even animals). This review provides information on aluminum localization and uptake process by different staining techniques, as well as the effects of its toxicity at different compartment levels and the physiological consequences derived from them. In addition, molecular studies in recent years have reported specific responses to Al toxicity, such as overexpression of various protective proteins. Besides, this review discusses data on various organelle-based responses, cell death, and other mechanisms, data on tobacco plants and other kingdoms relevant to these studies.  相似文献   
3.
The oomycete Albugo candida causes white rust of Brassicaceae, including vegetable and oilseed crops, and wild relatives such as Arabidopsis thaliana. Novel White Rust Resistance (WRR) genes from Arabidopsis enable new insights into plant/parasite co-evolution. WRR4A from Arabidopsis accession Columbia (Col-0) provides resistance to many but not all white rust races, and encodes a nucleotide-binding, leucine-rich repeat immune receptor. Col-0 WRR4A resistance is broken by AcEx1, an isolate of A. candida. We identified an allele of WRR4A in Arabidopsis accession Øystese-0 (Oy-0) and other accessions that confers full resistance to AcEx1. WRR4AOy-0 carries a C-terminal extension required for recognition of AcEx1, but reduces recognition of several effectors recognized by the WRR4ACol-0 allele. WRR4AOy-0 confers full resistance to AcEx1 when expressed in the oilseed crop Camelina sativa.  相似文献   
4.
Y2Zr2O7‐doped with Eu3+ and Sm3+ phosphors were prepared for the first time as multifunctional smart materials using a solid‐state reaction method at 1400oC. Thermal behaviour, crystal structure, surface morphology, and elemental analysis were characterized using thermogravimetric (TG) and differential thermal (DTA) analyses, X‐ray diffraction (XRD) and scanning electron microscope equipped with energy‐dispersive X‐ray spectroscopy (SEM‐EDX). Experimental results revealed that both phosphors have a pyrochlore structure with a cubic crystal system. Photoluminescence properties were also measured and red emission was observed from Y1.90Eu0.10Zr2O7 and Y1.90Sm0.10Zr2O7 phosphors. Dielectric constant, loss tangent, piezoelectric charge constant, and Curie temperature of all the samples were determined using an LCR‐meter, d33‐meter, and TG/DTA. Eu doping in Y2Zr2O7 resulted in a high dielectric constant (9.61) and low loss tangent (1.67%) values, whereas high piezoelectric charge constant (0.68 pC/N) and high Curie temperature (820°C) could be obtained using Sm‐doped Y2Zr2O7.  相似文献   
5.
Diabetes mellitus is a serious worldwide metabolic disease, which is accompanied by hyperglycaemia and affects all organs and body system. Zinc (Zn) is a basic cofactor for many enzymes, which also plays an important role in stabilising the structure of insulin. Liver is the most important target organ after pancreas in diabetic complications. In this study, we aimed to investigate the protective role of Zn in liver damage in streptozotocin (STZ)‐induced diabetes mellitus. There are four experimental groups of female Swiss albino rats: group I: control; group II: control + ZnSO4; group III: STZ‐induced diabetic animals and group IV: STZ‐diabetic + ZnSO4. To induce diabetes, STZ was injected intraperitoneally (65 mg/kg). ZnSO4 (100 mg/kg) was given daily to groups II and IV by gavage for 60 days. At the end of the experiment, rats were killed under anaesthesia and liver tissues were collected. In the diabetic group, hexose, hexosamine, fucose, sialic acid levels, arginase, adenosine deaminase, tissue factor activities and protein carbonyl levels increased, whereas catalase, superoxide dismutase, glutathione‐S‐transferase, glutathione peroxidase, glutathione reductase and Na+/K+‐ATPase activities decreased. The administration of Zn to the diabetic group reversed all the negative effects/activities. According to these results, we can suggest that Zn has a protective role against STZ‐induced diabetic liver damage.  相似文献   
6.
In spite of the many developments in synthetic oligonucleotide (ON) chemistry and design, invasion into double-stranded DNA (DSI) under physiological salt and pH conditions remains a challenge. In this work, we provide a new ON tool based on locked nucleic acids (LNAs), designed for strand invasion into duplex DNA (DSI). We thus report on the development of a clamp type of LNA ON—bisLNA—with capacity to bind and invade into supercoiled double-stranded DNA. The bisLNA links a triplex-forming, Hoogsteen-binding, targeting arm with a strand-invading Watson–Crick binding arm. Optimization was carried out by varying the number and location of LNA nucleotides and the length of the triplex-forming versus strand-invading arms. Single-strand regions in target duplex DNA were mapped using chemical probing. By combining design and increase in LNA content, it was possible to achieve a 100-fold increase in potency with 30% DSI at 450 nM using a bisLNA to plasmid ratio of only 21:1. Although this first conceptual report does not address the utility of bisLNA for the targeting of DNA in a chromosomal context, it shows bisLNA as a promising candidate for interfering also with cellular genes.  相似文献   
7.
BtpA/Btp1/TcpB is a virulence factor produced by Brucella species that possesses a Toll interleukin-1 receptor (TIR) domain. Once delivered into the host cell, BtpA interacts with MyD88 to interfere with TLR signalling and modulates microtubule dynamics. Here the crystal structure of the BtpA TIR domain at 3.15 Å is presented. The structure shows a dimeric arrangement of a canonical TIR domain, similar to the Paracoccus denitrificans Tir protein but secured by a unique long N-terminal α-tail that packs against the TIR:TIR dimer. Structure-based mutations and multi-angle light scattering experiments characterized the BtpA dimer conformation in solution. The structure of BtpA will help with studies to understand the mechanisms involved in its interactions with MyD88 and with microtubules.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号