首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   1篇
  2022年   2篇
  2016年   5篇
  2015年   1篇
  2014年   3篇
  2013年   6篇
  2012年   8篇
  2011年   15篇
  2010年   8篇
  2009年   3篇
  2008年   8篇
  2007年   4篇
  2006年   10篇
  2005年   11篇
  2004年   9篇
  2003年   6篇
  2002年   5篇
  1999年   1篇
  1997年   1篇
  1993年   2篇
  1986年   2篇
  1983年   1篇
排序方式: 共有111条查询结果,搜索用时 15 毫秒
1.
Assimilatory nitrate reductase (NR) from the cyanobacteriumPlectonema boryanum exhibits both ferredoxin (Fd)- and methylviologen (MV)-linked activities. Native (Fd-linked) activitywas reversibly inactivated by the exposure of a dithionite solutionof the enzyme to air, whereas MV-linked activity remained unaffected.Cyanate and azide, competitive inhibitors of NR, suppressedthe dithionite-induced inactivation, and the inactivation wasspecifically prevented by superoxide dismutase (SOD). Xanthineoxidase reaction inactivated Fd-linked activity but not MV-linkedactivity, and the native activity was protected by SOD and catalase.Photoactivated FAD/ EDTA irreversibly inactivated both Fd- andMV-linked activities, and the former activity was protectedby ascorbic acid. Dithionite-inactivated enzyme was restoredto its Fd-linked activity when incubated with cyanate or azidein the presence of dithionite or reduced Fd. Cyanide inactivatedboth Fd- and MV-linked activities when the enzyme was incubatedunder reducing conditions. The cyanide-inactivated enzyme wasalso reactivated by cyanate and azide under reducing conditions.It is suggested that superoxide and cyanide act as ligands tothe molybdenum center in the reversible inactivation of thenative activity of cyanobacterial Fd-NR. (Received March 3, 1986; Accepted May 30, 1986)  相似文献   
2.
Changes in Lipoxygenase Components of Rice Seedlings during Germination   总被引:1,自引:0,他引:1  
Changes in lipoxygenase (LOX) activity were followed duringthe germination of rice seeds. The enzyme activity of 3-day-oldseedlings was 20 times higher than that of ungerminated seeds.Sixty per cent of the increased activity was found in shoots.The increase in LOX activity was mainly due to an increase inlipoxygenase-2 (LOX-2), a minor component in ungerminated seeds;this increase was inhibited by cycloheximide. LOX-2 was isolatedfrom the 3-day-old seedlings and compared for its enzymologicalproperties with rice lipoxygenase-3 (LOX-3), a major componentin ungerminated seeds. Both LOX-2 and LOX-3 were stable at pH5 to 8, but LOX-2 was more heatstable than LOX-3. Apparent Kmvalues of LOX-2 and LOX-3 for linoleic acid were 170 and 59µM, and those for linolenic acid were 5,300 and 88 µM,respectively. Both LOXs were inhibited by some metal ions andantioxidants. (Received February 5, 1986; Accepted May 9, 1986)  相似文献   
3.
The androgen-dependent clonal cell line SC-3, derived from Shionogi carcinoma 115, secretes a fibroblast growth factor (FGF)-autocrine growth factor in response to androgen, which is able to bind to FGF receptors. In SC-3 cells, FGF receptor expression is upregulated by the SC-3-derived growth factor, providing a means of amplifying an autocrine loop of cell growth. In the present investigations, the effect of the polysulfonated naphthylurea suramin on this autocrine loop and its amplification in SC-3 cells were studied. Suramin inhibited androgen-dependent growth of SC-3 cells in a concentration-dependent fashion: ~50% inhibition was observed at 25 μM. [3H]Thymidine incorporation into the cells stimulated with partially purified SC-3-derived growth factor was inhibited by suramin in a similar way. Additionally, suramin inhibited acidic (a) or basic (b) FGF-induced cell proliferation, though relatively high concentrations were necessary to achieve the maximal inhibition. Pretreatment of SC-3 cells with suramin decreased cell surface 125I-bFGF binding without altering dissociation constant (Kd) of the binding sites. When the cells were incubated with 250 μM suramin for 24 h, the maximum binding (Bmax) decreased to almost 50% of the control. Treatment with suramin also decreased the levels of FGF receptor-1 mRNA to a similar extent, whereas it appeared not to affect the levels of β-actin mRNA. Moreover, suramin completely blocked androgen- or bFGF-induced accumulation of FGF receptor-1 mRNA. The inhibitory effects of suramin on FGF receptor expression were reversed by simultaneous addition of high concentrations of bFGF. These results indicate that suramin exerts its potent antiproliferative action on SC-3 cells through inhibition of an androgen-inducible autocrine loop involving SC-3-derived growth factor and FGF receptor. © 1993 Wiley-Liss, Inc.  相似文献   
4.
Background. Low recurrence of gastritis is seen in patients infected with Helicobacter pylori carrying the type II urease B gene, compared with H. pylori carrying types I and III. The underlying mechanism has been studied in terms of the urease activity and interleukin (IL)‐8 production capacity of different strains of H. pylori. Materials and Methods. Forty‐five patients infected with different strains of H. pylori (type I; 15, type II; 15 and type III; 15) were enrolled in the study. H. pylori was isolated from gastric mucosa and cultured in the presence of urea at pH 5.5 to evaluate urease activity. The capacity of different strains of H. pylori to induce IL‐8 mRNA and IL‐8 from a human gastric cancer cell line and human peripheral blood mononuclear cells was evaluated. Results. The urease activity of type II H. pylori[523 ± 228 µg of ammonia/dl/108 colony‐forming units (CFU)/ml] was significantly lower than that of type I (1355 ± 1369 µg of ammonia/dl/108 CFU/ml) and type III (1442 ± 2229 µg of ammonia/dl/108 CFU/ml) (p < .05). Gastric cancer cells cocultured with type II H. pylori produced lower levels of IL‐8 mRNA compared with type I and type III H. pylori. The levels of IL‐8 were also significantly lower in cultures induced by type II H. pylori compared with those induced by type I and type III H. pylori. Peripheral blood mononuclear cells also produced lower levels of IL‐8 when cocultured with type II compared with type I H. pylori. Conclusions. These results indicate that both the lower level of urease activity and the low IL‐8‐inducing capacity of type II H. pylori might underlie the lower recurrence rate of gastritis caused by type II H. pylori.  相似文献   
5.
The enzyme HemK (or PrmC) is one of the first identified methyltransferases that modify glutamine. It methylates the highly conserved GGQ motif in class I release factors (RF1 and RF2) in Escherichia coli. HemK from Thermotoga maritima was over-expressed and crystallized in the presence of S-adenosylmethionine at 296 K using ammonium sulfate as the precipitant. X-ray diffraction data were collected to 2.5 A resolution from a native crystal. The crystal is orthorhombic, belonging to the space group I222 (or I2(1)2(1)2(1)), with unit-cell parameters of a = 104.24, b = 118.73, and c = 146.62 A. Two (or three) monomers of recombinant HemK are likely to be present in the crystallographic asymmetric unit, giving a V(M) of 3.62 A3 Da(-1) (or 2.41 A3 Da(-1)), with a solvent content of 62.7% (or 44.0%).  相似文献   
6.
Ferritins are ubiquitous iron storage proteins. Recently, we identified a novel metal-binding site, transit site, in the crystal structure of phytoferritin. To elucidate the function of the transit site in ferritin from other species, we prepared transit-site-deficient mutants of human H ferritin, E140A and E140Q, and their iron oxidation kinetics was analyzed. The initial velocities of iron oxidization were reduced in the variants, especially in E140Q. The crystal structure of E140Q showed that the side chain of the mutated Gln140 was fixed by a hydrogen bond, whereas that of native Glu140 was flexible. These results suggest that the conserved transit site also has a function to assist with the metal ion sequestration to the ferroxidase site in ferritins from vertebrates.  相似文献   
7.
Bacillus sp. GL1 xanthan lyase, a member of polysaccharide lyase family 8 (PL-8), acts exolytically on the side-chains of pentasaccharide-repeating polysaccharide xanthan and cleaves the glycosidic bond between glucuronic acid (GlcUA) and pyruvylated mannose (PyrMan) through a beta-elimination reaction. To clarify the enzyme reaction mechanism, i.e. its substrate recognition and catalytic reaction, we determined crystal structures of a mutant enzyme, N194A, in complexes with the product (PyrMan) and a substrate (pentasacharide) and in a ligand-free form at 1.8, 2.1, and 2.3A resolution. Based on the structures of the mutant in complexes with the product and substrate, we found that xanthan lyase recognized the PyrMan residue at subsite -1 and the GlcUA residue at +1 on the xanthan side-chain and underwent little interaction with the main chain of the polysaccharide. The structure of the mutant-substrate complex also showed that the hydroxyl group of Tyr255 was close to both the C-5 atom of the GlcUA residue and the oxygen atom of the glycosidic bond to be cleaved, suggesting that Tyr255 likely acts as a general base that extracts the proton from C-5 of the GlcUA residue and as a general acid that donates the proton to the glycosidic bond. A structural comparison of catalytic centers of PL-8 lyases indicated that the catalytic reaction mechanism is shared by all members of the family PL-8, while the substrate recognition mechanism differs.  相似文献   
8.
The bacterial enzyme UDP-N-acetylglucosamine enolpyruvyl transferase catalyzes the first committed step of peptidoglycan biosynthesis, i.e., transfer of enolpyruvate from phosphoenolpyruvate to UDP-N-acetyl-glucosamine. We have overexpressed the enzyme from Haemophilus influenzae in Escherichia coli and crystallized it in the apo-form, as well as in a complex with UDP-N-acetylglucosamine and fosfomycin using ammonium sulfate as the precipitant. X-ray diffraction data from a crystal of the apo-form were collected to 2.8 A resolution at 293 K. The crystal quality was improved by co-crystallization with UDP-N-acetylglucosamine and fosfomycin. X-ray data to 2.2 A have been collected at 100 K from a flash-frozen crystal of the complex. The complex crystals belong to the orthorhombic space group I222 (or I212121) with unit-cell parameters of a = 63.7, b = 124.5, and c = 126.3 A. Assuming a monomer of the recombinant enzyme in the crystallographic asymmetric unit, the calculated Matthews parameter (VM) is 2.71 A3 Da-1 and solvent content is 54.6%.  相似文献   
9.
Unsaturated glucuronyl hydrolase (UGL) is a novel glycosaminoglycan hydrolase that releases unsaturated d-glucuronic acid from oligosaccharides produced by polysaccharide lyases. The x-ray crystallographic structure of UGL from Bacillus sp. GL1 was first determined by multiple isomorphous replacement (mir) and refined at 1.8 A resolution with a final R-factor of 16.8% for 25 to 1.8 A resolution data. The refined UGL structure consists of 377 amino acid residues and 478 water molecules, four glycine molecules, two dithiothreitol (DTT) molecules, and one 2-methyl-2,4-pentanediol (MPD) molecule. UGL includes an alpha(6)/alpha(6)-barrel, whose structure is found in the six-hairpin enzyme superfamily of an alpha/alpha-toroidal fold. One side of the UGL alpha(6)/alpha(6)-barrel structure consists of long loops containing three short beta-sheets and contributes to the formation of a deep pocket. One glycine molecule and two DTT molecules surrounded by highly conserved amino acid residues in UGLs were found in the pocket, suggesting that catalytic and substrate-binding sites are located in this pocket. The overall UGL structure, with the exception of some loops, very much resembled that of the Bacillus subtilis hypothetical protein Yter, whose function is unknown and which exhibits little amino acid sequence identity with UGL. In the active pocket, residues possibly involved in substrate recognition and catalysis by UGL are conserved in UGLs and Yter. The most likely candidate catalytic residues for glycosyl hydrolysis are Asp(88) and Asp(149). This was supported by site-directed mutagenesis studies in Asp(88) and Asp(149).  相似文献   
10.
Bacterial unsaturated glucuronyl hydrolases (UGLs) together with polysaccharide lyases are responsible for the complete depolymerization of mammalian extracellular matrix glycosaminoglycans. UGL acts on various oligosaccharides containing unsaturated glucuronic acid (DeltaGlcA) at the nonreducing terminus and releases DeltaGlcA through hydrolysis. In this study, we demonstrate the substrate recognition mechanism of the UGL of Bacillus sp. GL1 by determining the X-ray crystallographic structure of its substrate-enzyme complexes. The tetrasaccharide-enzyme complex demonstrated that at least four subsites are present in the active pocket. Although several amino acid residues are crucial for substrate binding, the enzyme strongly recognizes DeltaGlcA at subsite -1 through the formation of hydrogen bonds and stacking interactions, and prefers N-acetyl-d-galactosamine and glucose rather than N-acetyl-d-glucosamine as a residue accommodated in subsite +1, due to the steric hindrance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号