首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   3篇
  2017年   2篇
  2015年   3篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  2000年   1篇
  1999年   2篇
  1994年   1篇
  1978年   1篇
  1969年   1篇
  1919年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
2.
Indirect assays have claimed to quantify phytate (InsP6) levels in human biofluids, but these have been based on the initial assumption that InsP6 is there, an assumption that our more direct assays disprove. We have shown that InsP6 does not and cannot (because of the presence of an active InsP6 phosphatase in serum) exist in mammalian serum or urine. Therefore, any physiological effects of dietary InsP6 can only be due either to its actions in the gut as a polyvalent cation chelator, or to inositol generated by its dephosphorylation by gut microflora.We are grateful to Dr Vucenik for bringing up a number of interesting points.It is true that we have not quantified the dietary intakes of our human donors any more (but also hardly any less) than has been done by those groups claiming that InsP6 is present in bodily fluids. As a qualitative observation we should point out that in fact all our donors for ref. [1] do have a regular intake of dietary cereals and indeed, one is a strict vegetarian on a high cereal diet. But it is quantification that reveals this to be a specious issue. The limits of detection in our two relevant publications [1,2] for InsP6 in plasma and urine were, respectively, around two and three orders of magnitude lower than the levels claimed to be present by Grases et al. [3] in the fluids of experimentally phytate-deprived human subjects. These numbers make the argument that we could not detect any InsP6 simply because we chose donors on the ‘wrong’ diet untenable.So how have those many claims that InsP6 is present in body fluids come about? For most of them, the simple answer appears to be that the assays used are indirect and are based entirely on the assumption that InsP6 is present in the first place. Thus, for example, Valiente and co-workers [4,5] and Chen and co-workers [6,7] measured organic phosphate remaining after a series of fractionations of urine samples and simply assumed it was due to InsP6, as did March et al. measuring inorganic phosphate after a similar protocol [8]. Grases co-workers [9] have used extensively a less indirect assay, which, after initial ion chromatography and dephosphorylation by a phytase, measures myo-inositol by mass spectrometry, but nevertheless the assay starts with the assumption that InsP6 is there and that this is what they are quantifying. More recently, direct quantification of InsP6 in plasma by mass spectrometry has been claimed [10] on the basis that there are peaks in plasma at m/z 624 running near where InsP6 standards elute in two different HPLC separations [10,11]. But no evidence is presented to show even that these peaks are the same compound, let alone any data to establish firmly that InsP6 is present, e.g. a minimal requirement of m/z quantified to two decimal places with allowance for C13 content or a full disintegration fingerprint (see also [12]). Any quantified misidentification is likely to have a stochastic element to it, and it is noteworthy that Perelló & Grases have stated [11, p. 255]: ‘…we have found some humans and rats having undetectable [InsP6], probably depending on their diet or other unknown factors’. In the light of the preceding discussion, we can offer a simpler explanation: the InsP6 was never there in the first place.In contrast to these claims we have, using two entirely independent specific and sensitive assays with quantified spiking recovery, unambiguously shown that InsP6 is not present in plasma or urine. This is crucial and central to the whole debate about the actions of dietary InsP6, because it means that InsP6 never enters the blood. It is only absorbed after being dephosphorylated, principally to inositol (see [1,2] for further discussion). Ironically, the most direct evidence for this lies in Dr Vucenik''s own data in experiments examining the fate of radioactive InsP6 fed to animals, in which only inositol was detected in the blood [13]. This particular study was, as Dr Vucenik points out in her letter, conducted on mice. However, exactly the same conclusion (i.e. InsP6 does not enter the circulation from the gut) is equally clear in her earlier study [14], which she did not cite and which was indeed on rats; does this omission ‘reflect poorly’ on Dr Vucenik''s own ‘report and the author''s credibility in culling scientific data’?In short, dietary InsP6 can have only two fates: it can stay in the gut, ultimately to be defecated [15], and while it is there it can chelate metal ions to alter their uptake from the gut into the body. This is no ‘straw-man’ and is certainly the most likely explanation for all of the effects of InsP6 on cultured cells, which comprise the majority of the reports cited by Dr Vucenik. Alternatively, InsP6 can be converted to inositol (principally by the gut microflora [15]) and be taken up as such into the circulation; were any InsP6 to get into the blood it would in any case be rapidly dephosphorylated by the phosphatase activity we have shown to be present in human plasma [1].For animal studies, we have raised the possibility [1,2] that it is the inositol so generated (Vitamin Bh, harmless as far as we know) that is the active mediator of any reported beneficial effects of dietary InsP6. We note that most of the websites touting InsP6 as a dietary supplement advocate inositol as an important (essential?) co-supplement; that the only human cancer study highlighted as important by Dr Vucenik that we could examine [16] did not administer InsP6 alone, but only in conjunction with inositol; and that in the few studies where the separate contributions of inositol and InsP6 have been considered, there are data suggesting that it may be the inositol that matters (e.g. fig. 1 of [17]). Moreover, we are not the only ones to suggest this idea. In the Discussion of their paper (on mice) in which InsP6 was shown not to enter the blood from the gut [13], Dr Vucenik and her colleagues state: ‘Inositol may be responsible for the antitumor actions observed in both chemopreventitive and efficacy studies of IP6 … A question remains as to whether the activity of IP6 in animal models can be replicated by administration of inositol alone because only inositol was detected in plasma and tumor after oral gavage’. Precisely.Finally, returning to InsP6 itself, which, incidentally, is officially classified by the FDA as a ‘fake’ cancer cure (http://www.fda.gov/drugs/guidancecomplianceregulatoryinformation/enforcementactivitiesbyfda/ucm171057.htm), our data lead inevitably to the conclusion that while InsP6 might impact on the gut environment and thus indirectly on its microflora [2,12], its only plausible direct action on the body will be to inhibit cation uptake from the diet. Although InsP6 binds trivalent cations with a higher affinity than divalents [18], it is nevertheless comparatively non-specific in this action. Administering chemicals to the diet to manipulate ion uptake is not unknown in modern medicine; for treatment of iron disorders such as haemochromatosis, as an alternative to injection of Desferral, oral administration of the closely related chelator Deferasirox is now sometimes recommended [19]. But Deferasirox is a highly iron-specific chelator, administered under close medical supervision for a directly iron-related pathology. Recommending unmonitored, widespread administration of InsP6 to address a veritable multitude of different pathologies [20] seems to us to be an entirely different matter.In a well-fed human, where the cation to InsP6 ratio in the diet is high, InsP6 may very well do no harm (it is, after all, a natural component of our diet) and there is much evidence to support this idea, as argued by Dr Vucenik. But if InsP6 is not impacting on cation uptake from the diet to do any harm it is difficult to understand how at exactly the same time it can impact on the same uptake to do good. (See reference [21] for the studies Dr Vucenik requested ‘unequivocally demonstrating the toxicity of pure Ca-Mg-InsP6 as it occurs naturally’ in humans with low dietary cation uptake.) In the light of the above discussion and our rigorous data, we stand unreservedly by our original closing statement [1]: ‘…that chronically altering cation absorption from the gut by artificially loading the diet with a non-specific chelator … in the hope that it might impact indirectly on cancer or other pathologies seems highly inadvisable’.  相似文献   
3.
Transgenic lines of the spring barley variety Golden Promise containing the firefly luciferase gene were produced by particle bombardment of immature embryos. Non-destructive analysis of luciferase gene expression was used to monitor the transformation process. This revealed that transformation efficiency, in terms of the percentage of bombarded immature embryos giving rise to transformed callus lines, was very high, up to 40%. Following the expression of the luciferase gene provided a method for the sensitive, non-destructive, real-time monitoring of gene expression throughout the transformation process. Luciferase expression could also be used to easily identify transgenic plants and to identify homozygous transgenic plants at an early stage. The production of transgenic barley by selecting for luciferase-positive material, without an additional selection system, was possible but technically difficult.  相似文献   
4.
5.
Photosynthesis: action spectra for leaves in normal and low oxygen   总被引:1,自引:1,他引:0       下载免费PDF全文
The action spectrum of apparent photosynthesis for attached radish (Raphanus sativus L. var. Early Scarlet Globe) and corn (Zea mays L. var. Pride V.) leaves was measured at 300 μl/l CO2 and both 21% and 2% O2. The spectra were measured at light intensities where apparent photosynthesis was proportional to intensity. For radish, a high compensation point plant, oxygen had an inhibiting effect on photosynthesis at all wavelengths from 402 to 694 mμ. If a constant rate of photosynthesis at 21% O2 for the different wavelengths was chosen, then the percent increase in net CO2 fixation at 2% O2 was constant. For corn, a low compensation point plant, no inhibitory effect of oxygen concentration from 2% to 21% O2 was found over the visible spectrum. The CO2 compensation point for light intensities greater than the light compensation point was found to be constant and independent of wavelength for both radish and corn leaves. For radish, the lowering of the oxygen concentration from 21% to 2% at these intensities was found to reduce the CO2 compensation point by the same amount for the wavelengths studied.  相似文献   
6.
It has been suggested that there are at least 15 Mal d 1-related (PR10) genes in one genotype of apple (Malus×domestica Borkh.). We sequenced cDNA libraries of cultivar Royal Gala and identified 12 members of the Mal d 1 family, including the previously reported Mal d 1b and Mal d 1d, an allelic variant of the previously reported Mal d 1a. Eight Mal d 1 gene products were expressed in tree-ripened fruit, in either the cortex or the skin, and most of these were also expressed in leaves in response to challenge with Venturia inaequalis—a fungal disease of apple. Mal d 1 gene products were identified from a large number of different tissues. Degree of ripeness as measured by standard parameters was shown not to predict either the amount of protein able to bind to a specific monoclonal antibody 5H8, previously shown to bind to an allergenic epitope in Mal d 1b and a/d, or the amount of Mal d 1 mRNA present. Mal d 1d and Mal d 1b were the most highly expressed isoforms in Royal Gala, particularly in the skin of fruit, and these isoforms were also predominant in other cultivars and species of apple. Genotypes, however, differed in relative predominance of Mal d 1b and Mal d 1d. The predominantly expressed Mal d 1 genes in ripe apple fruit were translated in vivo into proteins and proteins binding to the antibody were found in all cultivars and species examined. New Mal d 1 proteins were identified that bound to the 5H8 antibody. At least two new subfamilies have been identified, and while some structural differences are predicted between groups of isoforms, the P-loop motif is identical in all except two isoforms. A role in intracellular signalling in plants is suggested and in vitro expression of the isoforms should help in assessing their relative roles in disease, allergic responses, senescence and nucleotide-, cytokinin- and brassinosteroid-binding.  相似文献   
7.
Inositol phosphates are a large and diverse family of signalling molecules. While genetic studies have discovered important functions for them, the biochemistry behind these roles is often not fully characterized. A key obstacle in inositol phosphate research in mammalian cells has been the lack of straightforward techniques for their purification and analysis. Here we describe the ability of titanium dioxide (TiO2) beads to bind inositol phosphates. This discovery allowed the development of a new purification protocol that, coupled with gel analysis, permitted easy identification and quantification of InsP6 (phytate), its pyrophosphate derivatives InsP7 and InsP8, and the nucleotides ATP and GTP from cell or tissue extracts. Using this approach, InsP6, InsP7 and InsP8 were visualized in Dictyostelium extracts and a variety of mammalian cell lines and tissues, and the effects of metabolic perturbation on these were explored. TiO2 bead purification also enabled us to quantify InsP6 in human plasma and urine, which led to two distinct but related observations. Firstly, there is an active InsP6 phosphatase in human plasma, and secondly, InsP6 is undetectable in either fluid. These observations seriously question reports that InsP6 is present in human biofluids and the advisability of using InsP6 as a dietary supplement.  相似文献   
8.
9.

Background  

Metabolically versatile soil bacteria Burkholderia cepacia complex (Bcc) have emerged as opportunistic pathogens, especially of cystic fibrosis (CF). Previously, we initiated the characterization of the phenylacetic acid (PA) degradation pathway in B. cenocepacia, a member of the Bcc, and demonstrated the necessity of a functional PA catabolic pathway for full virulence in Caenorhabditis elegans. In this study, we aimed to characterize regulatory elements and nutritional requirements that control the PA catabolic genes in B. cenocepacia K56-2.  相似文献   
10.
The availability of short stature apple scions that required minimal applications of chemical growth retardants and could be used with a range of rootstocks would be of considerable benefit to fruit growers. We have suppressed the expression of a gene encoding the gibberellin (GA) biosynthetic enzyme GA 20-oxidase to reduce the levels of bioactive GAs in a scion variety, resulting in significant reductions in stem height. Application of GA3 reversed the effect. The scion remained dwarfed after grafting on to normally invigorating rootstocks, whilst control plants of the same cultivar displayed the expected vigour when grafted on to these rootstocks. This approach could be applicable to any perennial crop variety, allowing dwarf trees to be obtained on any available rootstock or on their own roots without the need for chemical growth retardant application. In effect, seedlings that are well suited to local conditions (drought, salinity) could be employed as tree rootstocks, as could existing rootstocks valued for characters other than vigour control, such as pest and disease resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号