首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   267篇
  免费   19篇
  2022年   5篇
  2021年   3篇
  2020年   5篇
  2019年   5篇
  2018年   8篇
  2017年   7篇
  2016年   4篇
  2015年   15篇
  2014年   16篇
  2013年   10篇
  2012年   13篇
  2011年   20篇
  2010年   6篇
  2009年   7篇
  2008年   13篇
  2007年   13篇
  2006年   5篇
  2005年   14篇
  2004年   10篇
  2003年   7篇
  2002年   3篇
  2001年   5篇
  2000年   9篇
  1999年   6篇
  1998年   5篇
  1997年   6篇
  1996年   3篇
  1995年   6篇
  1994年   2篇
  1993年   2篇
  1991年   2篇
  1989年   4篇
  1988年   9篇
  1987年   5篇
  1986年   5篇
  1985年   5篇
  1983年   1篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   3篇
  1965年   1篇
  1941年   1篇
  1940年   1篇
  1938年   2篇
  1936年   2篇
  1935年   1篇
  1930年   2篇
排序方式: 共有286条查询结果,搜索用时 31 毫秒
1.
2.
Summary Tzs and ipt are two Ti plasmid genes coding for proteins with isopentenyltransferase (IPT) activity in vitro. We cloned both genes for protein expression in Escherichia coli and in Agrobacterium tumefaciens, and we investigated differences between the two genes by analysing the properties of the proteins in vitro and in vivo. In vitro, extracts with tzs or ipt-coded proteins had high IPT activity, and the enzymes were identical in most properties. The most important difference was detected in vivo: the tzs-encoded protein was very active in cytokinin production, while the ipt protein required overexpression in order to obtain measurable activity in bacteria. In both cases, rans-zeatin was the major product of the gene activity. Formation of this cytokinin requires a hydroxylase function in addition to the IPT reaction. No such activity could be ascribed to tzs or ipt-encoded proteins in vitro or in vivo, but cytokinin hydroxylase activity was detected in cells and extracts of E. coli, regardless of the presence or absence of the cytokinin genes. Based on these results it is proposed that both genes code for a single enzyme activity (isopentenyltransferase), that the genes and proteins are adapted for function either in bacteria (tzs) or in transformed plant cells (ipt), and that in both prokaryotic and eukaryotic cells hydroxylation to trans-zeatin is a function contributed by host enzymes.Abbreviations DMAPP dimethylallylpyrophosphate - iP isopentenyladenine - iPA isopentenyladenosine - iPMP isopentenyladenosine 5-monophosphate - IPT isopentenyltransferase - trans-Z trans-zeatin  相似文献   
3.
4.
The bile acid precursor 7 alpha-hydroxy-4-cholesten-3-one was found to be enzymatically dehydroxylated at a slow rate by liver tissues from the rat, human, and guinea pig. The rat liver enzyme is localized in the microsomal fraction, has a pH optimum of about 8.5, an apparent Km of 0.03-0.04 mM, and a Vmax of 10-15 nmoles.mg protein-1.hr-1. The product from 7 alpha-hydroxy-4-cholesten-3-one was identified as cholesta-4,6-dien-3-one by its chromatographic properties and by mass spectrometry. The reaction proceeded both in air and N2, and pyridine nucleotides were not required as cofactors. In addition to the enzymatic reaction, there was a significant nonenzymatic dehydroxylation of 7 alpha-hydroxy-4-cholesten-3-one, in particular at high pH and with high concentrations of protein. No 7 alpha-dehydroxylation occurred with various 7 alpha-hydroxylated 3 beta-hydroxy-delta 5-steroids. We have previously shown that at least part of the accumulation of cholestanol in cerebrotendinous xanthomatosis (CTX) is due to accelerated 7 alpha-dehydroxylation of bile acid intermediate(s), which are further converted into cholestanol. The capacity to dehydroxylate 7 alpha-hydroxy-4-cholesten-3-one was found to be about the same in homogenates of liver biopsies from two patients with CTX as in preparations from control subjects. It is suggested that increased levels of substrate (7 alpha-hydroxy-4-cholesten-3-one) in the liver, rather than increased amounts of 7 alpha-dehydroxylase is the explanation for the accelerated 7 alpha-dehydroxylation in CTX that leads to increased biosynthesis of cholestanol.  相似文献   
5.
The alpha-like globin gene cluster in rabbits contains embryonic zeta- globin genes, an adult alpha-globin gene, and theta-globin genes of undetermined function. The basic arrangement of genes, deduced from analysis of cloned DNA fragments, is 5'-zeta 0-zeta 1-alpha 1-theta 1- zeta 2-zeta 3-theta 2-3'. However, the pattern of restriction fragments containing zeta- and theta-globin genes varies among individual rabbits. Analysis of BamHI fragments of genomic DNA from 24 New Zealand white rabbits revealed eight different patterns of fragments containing zeta-globin genes. The large BamHI fragments containing genes zeta 0 and zeta 1 are polymorphic in length, whereas a 1.9-kb fragment containing the zeta 2 gene and the 3.5-kb fragment containing the zeta 3 gene do not vary in size. In contrast to this constancy in the size of the restriction fragments, the copy number of the zeta 2 and zeta 3 genes does vary among different rabbits. No length polymorphism was detected in the BamHI fragments containing the theta-globin genes, but again the copy number varies for restriction fragments containing the theta 2 gene. The alpha 1- and theta 1-globin genes are located in a nonpolymorphic 7.2-kb BamHI fragment. The combined data from hybridization with both zeta and theta probes shows that the BamHI cleavage pattern does not vary within the region 5'-alpha 1-theta 1- zeta 2-zeta 3-theta 2-3', but the pattern genomic blot-hybridization patterns for the progeny of parental rabbits with different zeta-globin gene patterns shows that the polymorphic patterns are inherited in a Mendelian fashion. Two different haplotypes have been mapped based on the genomic blot-hybridization data. The variation in the alpha-like globin gene cluster in the rabbit population results both from differences in the copy number of the duplication block containing the zeta-zeta-theta gene set and from the presence or absence of polymorphic BamHI sites.   相似文献   
6.
Summary The carpenter beesXylocopa varipuncta maintain thoracic temperatures of 33.0°C to 46.5°C during continuous free flight from 12°C to 40°C. Since the thoracic temperature excess is not constant (decreasing from 24°C at low air temperatures to 6°C at high) the bees are thermoregulating. We document physiological transfer of relatively large amounts of heat to the abdomen and to the head during pre-flight warm-up and during artificial thoracic heating. Most of the temperature increase of the head is due to passive conduction, while that of the abdomen is due to active physiological heat transfer despite a series of convolutions of the aorta in the petiole that anatomically conform to a counter-current heat exchanger. Although the thermoregulatory mechanisms during flight are far from clarified, our data suggest that thermoregulation involves a strong reliance on active convective cooling through increased flight speed.  相似文献   
7.
In order to study the relationships among mammalian alpha-globin genes, we have determined the sequence of the 3' flanking region of the human alpha 1 globin gene and have made pairwise comparisons between sequenced alpha-globin genes. The flanking regions were examined in detail because sequence matches in these regions could be interpreted with the least complication from the gene duplications and conversions that have occurred frequently in mammalian alpha-like globin gene clusters. We found good matches between the flanking regions of human alpha 1 and rabbit alpha 1, human psi alpha 1 and goat I alpha, human alpha 2 and goat II alpha, and horse alpha 1 and goat II alpha. These matches were used to align the alpha-globin genes in gene clusters from different mammals. This alignment shows that genes at equivalent positions in the gene clusters of different mammals can be functional or nonfunctional, depending on whether they corrected against a functional alpha-globin gene in recent evolutionary history. The number of alpha-globin genes (including pseudogenes) appears to differ among species, although highly divergent pseudogenes may not have been detected in all species examined. Although matching sequences could be found in interspecies comparisons of the flanking regions of alpha- globin genes, these matches are not as extensive as those found in the flanking regions of mammalian beta-like globin genes. This observation suggests that the noncoding sequences in the mammalian alpha-globin gene clusters are evolving at a faster rate than those in the beta-like globin gene clusters. The proposed faster rate of evolution fits with the poor conservation of the genetic linkage map around alpha-globin gene clusters when compared to that of the beta-like globin gene clusters. Analysis of the 3' flanking regions of alpha-globin genes has revealed a conserved sequence approximately 100-150 bp 3' to the polyadenylation site; this sequence may be involved in the expression or regulation of alpha-globin genes.   相似文献   
8.
An extensive literature survey on metazoan parasites from rainbow trout Oncorhynchus mykiss has been conducted. The taxa Monogenea, Cestoda, Digenea, Nematoda, Acanthocephala, Crustacea and Hirudinea are covered. A total of 169 taxonomic entities are recorded in rainbow trout worldwide although few of these may prove synonyms in future analyses of the parasite specimens. These records include Monogenea (15), Cestoda (27), Digenea (37), Nematoda (39), Acanthocephala (23), Crustacea (17), Mollusca (6) and Hirudinea (5). The large number of parasites in this salmonid reflects its cosmopolitan distribution.  相似文献   
9.
A cod hatching plant was established in 1992 on the island of Bornholm in the Baltic Sea in order to elucidate the possibilites for restocking of cod fry in this brackishwater system. The disease prevalence in 3 batches of hatchery-reared yolksac larvae from the Baltic cod (Gadus morhua L.) was monitored during the posthatch period. High prevalences of bacteriosis/mycosis, lordosis/scoliosis, injuries and protozoan endoparasitism were recorded. Vibrio sp. and Vibrio anguillarum serovar 04, 06, 08 in addition to nontypable strains and saprolegniaceous fungi were isolated from the larvae. The dinoflagellate-like endoparasites were located in the yolksac of the cod larvae.  相似文献   
10.
Throughfall nitrogen of a 15-year-old Picea abies (L.) Karst. (Norway spruce) stand in the Fichtelgebirge, Germany, was labeled with either 15N-ammonium or 15N-nitrate and uptake of these two tracers was followed during two successive growing seasons (1991 and 1992). 15N-labeling (62 mg 15N m-2 under conditions of 1.5 g N m-2 atmospheric nitrogen deposition) did not increase N concentrations in plant tissues. The 15N recovery within the entire stand (including soils) was 94%±6% of the applied 15N-ammonium tracer and 100%±6% of the applied 15N-nitrate tracer during the 1st year of investigation. This decreased to 80%±24% and 83%±20%, respectively, during the 2nd year. After 11 days, the 15N tracer was detectable in 1-year-old spruce needles and leaves of understory species. After 1 month, tracer was detectable in needle litter fall. At the end of the first growing season, more than 50% of the 15N taken up by spruce was assimilated in needles, and more than 20% in twigs. The relative distribution of recovered tracer of both 15N-ammonium and 15N-nitrate was similar within the different foliage age classes (recent to 11-year-old) and other compartments of the trees. 15N enrichment generally decreased with increasing tissue age. Roots accounted for up to 20% of the recovered 15N in spruce; no enrichment could be detected in stem wood. Although 15N-ammonium and 15N-nitrate were applied in the same molar quantities (15NH 4 + : 15NO 3 - =1:1), the tracers were diluted differently in the inorganic soil N pools (15NH 4 + /NH 4 + : 15NO 3 - /NO 3 - =1:9). Therefore the measured 15N amounts retained by the vegetation do not represent the actual fluxes of ammonium and nitrate in the soil solution. Use of the molar ammonium-to-nitrate ratio of 9:1 in the soil water extract to estimate 15N uptake from inorganic N pools resulted in a 2–4 times higher ammonium than nitrate uptake by P. abies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号