首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   267篇
  免费   22篇
  2023年   1篇
  2021年   9篇
  2020年   2篇
  2019年   8篇
  2018年   7篇
  2017年   4篇
  2016年   4篇
  2015年   14篇
  2014年   10篇
  2013年   16篇
  2012年   21篇
  2011年   15篇
  2010年   14篇
  2009年   13篇
  2008年   8篇
  2007年   19篇
  2006年   14篇
  2005年   6篇
  2004年   5篇
  2003年   14篇
  2002年   6篇
  2001年   8篇
  2000年   11篇
  1999年   5篇
  1998年   6篇
  1997年   6篇
  1996年   5篇
  1995年   1篇
  1994年   6篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   4篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1934年   1篇
排序方式: 共有289条查询结果,搜索用时 15 毫秒
1.
The mature embryo sac of Beta vulgaris consists of one egg cell, one persistent and one degenerated synergid, one cental cell with two fused polar nuclei, and five to six antipodals. The degeneration of one of the synergids appears before pollination in the maturing process. The two fused polar nuclei are located in the chalazal part of the central cell. The antipodals may have secretory activities. It is suggested that the embryo sac of the sugar beet completes the maturing process independently of pollination.  相似文献   
2.
The micropyle and the integuments of sugar beet (Beta vulgaris) ovules have been investigated by light and electron microscopy during differentiation and maturation of the ovule. The micropyle itself is formed by the inner integument which is surrounded by the outer integument at its base. The micropyle containts a fibrillar PAS+ substance and is often covered by a thin sheet or hymen. Both integuments are cuticle-covered thin sheets, each 2-few cell layers in thickness. In the outer integument an increase in starch accumulation occurs during ovule maturation and probably functions as nutrient storage for embryo development. The inner epidermis of the inner integument differentiates as the most conspicuous cell layer of the beet ovule. During growth and maturation of the ovule a system of small perinuclear vacuoles containing dense material increases steadily in these cells. At maturity this system fills up more than half of each cell and very dense material has accumulated in each vacuole. This vacuole content is highly refractive and contains tannins and/or polyphenols.  相似文献   
3.
Hormonal imprinting takes place at the first encounter of the hormone and receptor, and results in a changed binding capacity and reaction of the cell and its progeny generations. The imprinting effect of three amino acids and their oligopeptides is studied using fluorescent-labelled peptides. Glycine and lysine could provoke positive imprinting (increased binding in the progeny generations) for their own peptides, but alanine could not. Mostly positive imprinting was provoked by glycine and lysine peptides for their own peptides of different chain length. The optimal chain length provoking self-imprinting was four for glycine, two for lysine and three for alanine. Except in this case, alanine was neutral or provoked mostly negative imprinting. After reaching the optimal chain length, there is a decline in binding. Evolutionary conclusions are discussed.  相似文献   
4.
5.
When an γ‐irradiated Dy‐, Tm‐, Sm‐ or Mn‐doped CaSO4 crystal is impulsively deformed, two peaks appear in the ML intensity versus time curve, whereby the first ML peak is found in the deformation region and the second in the post‐deformation region of the crystals. In this study, intensities Im1 and Im2 corresponding to first and second ML peaks, respectively, increased linearly with an impact velocity v0 of the piston used to deform the crystals, and times tm1 and tm2 corresponding to the first and second ML peaks, respectively, decreased with impact velocity. Total ML intensity initially increased with impact velocity and then reached a saturation value for higher values of impact velocity. ML intensity increased with increasing γ‐doses and size of crystals. Results showed that the electric field produced as a result of charging of newly‐created surfaces caused tunneling of electrons to the valence band of the hole‐trapping centres. The free holes generated moved in the valence band and their subsequent recombination with electron trapping centres released energy, thereby resulting in excitation of luminescent centres. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
6.
The shrub Rosa rugosa (Japanese Rose), native to East Asia, is considered one of the most troublesome invasive plant species in natural or semi-natural habitats of northern Europe and has proven very difficult to control. We aimed at disentangling the species’ invasion history in Europe, including determining the number of introductions and their geographic origin, and at investigating whether populations in the introduced and native ranges differ in genetic diversity, structure and degree of differentiation. We found that introduced (n = 16) and native (n = 16) populations had similar levels of genetic diversity at seven nuclear SSR (microsatellite) loci. European populations lack isolation by distance and are less genetically differentiated than are populations in East Asia. Multiple and at least three independent colonization events, one of which was particularly successful, gave rise to current R. rugosa populations in Europe. The geographic distribution patterns of these three genetic clusters could not be explained by natural dispersal alone, indicating that human mediated secondary dispersal is driving the expansion in Europe. One cluster representing three of the European populations was most likely derived from NW Japan, whereas the origin of the remaining thirteen populations could not clearly be resolved. The introduction and expansion in Europe occurred with no significant loss of genetic diversity. We conclude that high propagule pressure at the primary establishment phase is the most parsimonious explanation for this pattern. A potential for long distance seed dispersal, coastal habitat connectivity and an outcrossing breeding system are factors likely to have enabled populations of R. rugosa to avoid detrimental effects of genetic bottlenecks and will further increase the species’ range size and abundance in Europe. We recommend that human-mediated dispersal should be prevented in order to halt the continued expansion.  相似文献   
7.
Recent studies from mountainous areas of small spatial extent (<2500 km2) suggest that fine‐grained thermal variability over tens or hundreds of metres exceeds much of the climate warming expected for the coming decades. Such variability in temperature provides buffering to mitigate climate‐change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine‐grained thermal variability across a 2500‐km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within <1000‐m2 units (community‐inferred temperatures: CiT). We then assessed: (1) CiT range (thermal variability) within 1‐km2 units; (2) the relationship between CiT range and topographically and geographically derived predictors at 1‐km resolution; and (3) whether spatial turnover in CiT is greater than spatial turnover in GiT within 100‐km2 units. Ellenberg temperature indicator values in combination with plant assemblages explained 46–72% of variation in LmT and 92–96% of variation in GiT during the growing season (June, July, August). Growing‐season CiT range within 1‐km2 units peaked at 60–65°N and increased with terrain roughness, averaging 1.97 °C (SD = 0.84 °C) and 2.68 °C (SD = 1.26 °C) within the flattest and roughest units respectively. Complex interactions between topography‐related variables and latitude explained 35% of variation in growing‐season CiT range when accounting for sampling effort and residual spatial autocorrelation. Spatial turnover in growing‐season CiT within 100‐km2 units was, on average, 1.8 times greater (0.32 °C km?1) than spatial turnover in growing‐season GiT (0.18 °C km?1). We conclude that thermal variability within 1‐km2 units strongly increases local spatial buffering of future climate warming across Northern Europe, even in the flattest terrains.  相似文献   
8.
Background: Colorectal carcinogenesis is believed to be a multi-stage process that originates with a localized adenoma, which linearly progresses to an intra-mucosal carcinoma, to an invasive lesion, and finally to metastatic cancer. This progression model is supported by tissue culture and animal model studies, but it is difficult to reconcile with several well-established observations, principally among these are that up to 25% of early stage (Stage I/II), node-negative colorectal cancer (CRC) develop distant metastasis, and that circulating CRC cells are undetectable in peripheral blood samples of up to 50% of patients with confirmed metastasis, but more than 30% of patients with no detectable metastasis exhibit such cells. The mechanism responsible for this diverse behavior is unknown, and there are no effective means to identify patients with pending, or who are at high risk for, developing metastatic CRC.Novel findings: Our previous studies of human breast and prostate cancer have shown that cancer invasion arises from the convergence of a tissue injury, the innate immune response to that injury, and the presence of tumor stem cells within tumor capsules at the site of the injury. Focal degeneration of a capsule due to age or disease attracts lymphocyte infiltration that degrades the degenerating capsules resulting in the formation of a focal disruption in the capsule, which selectively favors proliferating or “budding” of the underlying tumor stem cells. Our recent studies suggest that lymphocyte infiltration also triggers metastasis by disrupting the intercellular junctions and surface adhesion molecules within the proliferating cell buds causing their dissociation. Then, lymphocytes and tumor cells are conjoined through membrane fusion to form tumor-lymphocyte chimeras (TLCs) that allows the tumor stem cell to avail itself of the lymphocyte''s natural ability to migrate and breach cell barriers in order to intravasate and to travel to distant organs. Our most recent studies of human CRC have detected nearly identical focal capsule disruptions, lymphocyte infiltration, budding cells, and the formation of TLCs. Our studies have further shown that age- and type-matched node-positive and -negative CRC have a significantly different morphological and immunohistochemical profile and that the majority of lymphatic ducts with disseminated cells are located within the mucosa adjacent to morphologically normal appearing epithelial structures that express a stem cell-related marker.New hypothesis: Based on these findings and the growth patterns of budding cells revealed by double immunohistochemistry, we further hypothesize that metastatic spread is an early event of carcinogenesis and that budding cells overlying focal capsule disruptions represent invasion- and metastasis-initiating cells that follow one of four pathways to progress: (1) to undergo extensive in situ proliferation leading to the formation of tumor nests that subsequently invade the submucosa, (2) to migrate with associated lymphocytes functioning as “seeds” to grow in new sites, (3) to migrate and intravasate into pre-existing vascular structures by forming TLCs, or (4) to intravasate into vascular structures that are generated by the budding cells themselves. We also propose that only node-positive cases harbor stem cells with the potential for multi-lineage differentiation and unique surface markers that permit intravasation.  相似文献   
9.
In the context of radiotherapy, collateral effects of ablative doses of ionizing radiation (AIR) on stromal components of tumors remains understudied. In this work, cancer-associated fibroblasts (CAFs) isolated from freshly resected human lung tumors were exposed to AIR (1x 18 Gy) and analyzed for their release of paracrine factors. Inflammatory mediators and regulators of angiogenesis and tumor growth were analyzed by multiplex protein assays in conditioned medium (CM) from irradiated and non-irradiated CAFs. Additionally, the profile of secreted proteins was examined by proteomics. In functional assays, effects of CAF-CM on proliferative and migratory capacity of lung tumor cells (H-520/H-522) and human umbilical vein endothelial cells (HUVECs) and their tube-forming capacity were assessed. Our data show that exposure of CAFs to AIR results in 1) downregulated release of angiogenic molecules such as stromal cell-derived factor-1, angiopoietin, and thrombospondin-2 (TSP-2); 2) upregulated release of basic fibroblast growth factor from most donors; and 3) unaffected expression levels of hepatocyte growth factor, interleukin-6 (IL-6), IL-8, IL-1β, and tumor necrosis factor-α. CM from irradiated and control CAFs did not affect differently the proliferative or migratory capacity of tumor cells (H-520/H-522), whereas migratory capacity of HUVECs was partially reduced in the presence of irradiated CAF-CM. Overall, we conclude that AIR mediates a transformation on the secretory profile of CAFs that could influence the behavior of other cells in the tumor tissue and hence guide therapeutic outcomes. Downstream consequences of the changes observed in this study merits further investigations.  相似文献   
10.
Arctic plants and herbivores are subject to ongoing climatic changes that are more rapid and extreme than elsewhere on the planet, and thus it is pivotal to understand the arctic plant-herbivore interactions in a global change context. We examined how infestation by an eriophyoid gall mite affects the circumpolar shrub Salix arctica, and how the effects vary across vegetation types. Specifically, we compared multiple leaf characteristics (leaf area, biomass, nutrient levels, δ15N and δ13C, and stress and performance of the photosynthetic apparatus) of infested leaves to those of un-infested leaves. Furthermore, we examined how altered environmental conditions, here experimentally manipulated levels of temperature, water and nutrients, shading, and UV-B radiation, affect the prevalence, density, and intensity of gall mite infestation and its impacts on S. arctica. Infested leaves were smaller in area and biomass and had lower nitrogen and carbon pools. However, their carbon concentration was higher, possibly because the galls acted as carbon sinks. The smaller photosynthetic area and lower nutrient content caused increased stress on the photosynthetic apparatus in infested leaves. The remaining leaf tissue responded with a higher photosynthetic performance, although there were indications of a general reduction in photosynthesis. Female leaves were more affected than male leaves. The experimental manipulations of environmental conditions did not affect the gall prevalence, density, or intensity on S. arctica leaves. Rather, plants responded positively to the treatments, reducing the effects of the galls to in-significance. This suggests a higher tolerance and defense against gall mites under future climate conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号