首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
  2008年   1篇
  2006年   1篇
  1999年   2篇
  1988年   1篇
  1984年   1篇
  1972年   1篇
  1967年   1篇
排序方式: 共有8条查询结果,搜索用时 0 毫秒
1
1.
2.
3.
BassiriRad  H.  Tremmel  D.C.  Virginia  R.A.  Reynolds  J.F.  de Soyza  A.G.  Brunell  M.H. 《Plant Ecology》1999,145(1):27-36
A field experiment was conducted at the Jornada Long-Term Ecological Research (LTER) site in the Chihuahuan Desert of New Mexico to compare the rapidity with which the shrubs Larrea tridentata and Prosopis glandulosa utilized water, CO2 and nitrogen (N) following a simulated summer rainfall event. Selected plants growing in a roughly 50-m2 area were assigned to treatment and control groups. Treatment plants received the equivalent of 3 cm of rain, while no supplemental water was added to the control plants. Xylem water potential (x) and net assimilation rate (Anet) were evaluated one day before and one and three days after watering. To monitor short-term N uptake, soils around each plant were labeled with eight equally distant patches of enriched 15N before watering. Each tracer patch contained 20 ml of 20 mM 15 NH4 15NO3 (99 atom%) solution applied to the soil at 20 cm from the center of the plant at soil depths of 10 and 20 cm. Nitrogen uptake, measured as leaf 15N, was evaluated at smaller time intervals and for a longer period than those used for x and Anet. Both Anet and x exhibited a significant recovery in watered vs. control Larrea plants within 3 days after the imposition of treatment, but no such recovery was observed in Prosopis in that period. Larrea also exhibited a greater capacity for N uptake following the rain. Leaf 15N was five-fold greater in watered compared to unwatered Larrea plants within 2 days after watering, while foliar 15N was not significantly different between the watered and unwatered Prosopis plants during the same period. Lack of a significant change in root 15 NO 3 uptake kinetics of Larrea, even three days after watering, indicated that the response of Larrea to a wetting pulse may have been due to a greater capacity to produce new roots. The differential ability of these potential competitors in rapidly acquiring pulses of improved soil resources following individual summer rainfall events may have significant implications for the dynamic nature of resource use in desert ecosystems.  相似文献   
4.
In a recent study on the reducing requirement for the methionine sulfoxide reductases (Msr) (Sagher, D., Brunell, D., Hejtmancik, J. F., Kantorow, M., Brot, N. & Weissbach, H. (2006) Proc. Natl. Acad. Sci. U. S. A. 103, 8656-8661), we have shown that thioredoxin, although an excellent reducing system for Escherichia coli MsrA and MsrB and bovine MsrA, is not an efficient reducing agent for either human MsrB2 (hMsrB2) or human MsrB3 (hMsrB3). In a search for another reducing agent for hMsrB2 and hMsrB3, it was recently found that thionein, the reduced, metal-free form of metallothionein, could function as a reducing system for hMsrB3, with weaker activity using hMsrB2. In the present study, we provide evidence that some selenium compounds are potent reducing agents for both hMsrB2 and hMsrB3.  相似文献   
5.
Cross-compatibility within and among populations of the perennialEriastrum densifolium was investigated to determine if sterility barriers have evolved within this polytypic species, and to correlate any such barriers to previously known patterns of genetic and morphological variation. Furthermore, the reproductive affinities of the endangeredE. densifolium subsp.sanctorum are investigated. Results indicate that no single population or group of populations is reproductively isolated from all other populations, and that F1 hybrids are fully fertile. Interspecific crosses (withE. eremicum andE. sapphirinum) were largely unsuccessful. The endangeredE. densifolium subsp.sanctorum demonstrates high interfertility with all other populations.  相似文献   
6.
7.
8.
SR141716 (rimonabant) is an endocannabinoid receptor antagonist. Endocannabinoids are a class of chemicals that affect neurotransmission via G-protein coupled CB1 (brain) and CB2 (peripheral tissue) receptors. Numerous animal studies have shown that SR141716 binds with the CB1 receptor in the brain, resulting in several biological consequences including reduced alcohol intake and reward as well as reduced food consumption. In this work, an analytical method based on liquid chromatography and electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) has been developed and validated for the quantitative measurement of SR141716 in both human and rat plasma to support the investigation of this compound. A suitable internal standard (AM251) has been chosen and the experimental conditions have been optimized for the separation and detection of singly charged positive ions of SR141716 and the internal standard. A protein precipitation protocol has been developed for extraction of SR141716 and the internal standard from plasma samples. Quantitation was achieved using multiple-reaction-monitoring (MRM) mode for SR141716 (m/z 463-->m/z 363) and the internal standard (m/z 555-->m/z 455) and calibration curve over the concentration range of 5.00-1000 ng/ml was plotted using the peak-area ratio versus the concentration of SR141716 with a LOD and LLOQ of 1.09 and 3.62 ng/ml, respectively. The method developed has been used to analyze SR141716 in rat plasma samples from an animal study.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号